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1. Background

- Automatic Phoneme Recognition (APR) is a form of Automatic Speech
Recognition (ASR).
- APR focuses on recognizing phonemes rather than words.

2. Problem

- Recent research has presented TDNN-BLSTM? and TDNN-OPGRU? as the best
performing networks for prepared speech and spontaneous speech respectively for
Dutch?.

- APR systems are able to identify phonemes even when the words that are spoken | - Mandarin could pose different issues for an APR system because it is a tonal

were not part of the training data. language.
T inyi Translati
- APR can be useful for a variety of tasks including the identification of _ _ o 1 zgym mrz: aren
mispronounced phonemes and aiding people with a speech impediment! - Evaluating the network on Mandarin = e
will provide more insight into the general P T
performance ofthe networks. 5
4. Results dms__Jscold

Table 1: Tone example in Mandarin
- A higher learning rate together with a large layer size produced the lowest

Phoneme Error Rate (PER®). - Goal: To investigate the performance of the TDNN-OPGRU architecture when

decoding phonemes in Mandarin prepared and spontaneous speech.

5. Discussion

- Areduced layer size results in a greater performance drop with tone information
than without.

data set PER | - TDNN-OPGRU performs better on - The difference in PER between prepared and spontaneous speech is
Prepared speech 39.09 | spontaneous speech than on prepared unexpecteds:
Prepared speech no tones | 29.34 | speech. - There are several aspects of the research setup that could have contributed to this
Spontaneous speech 30.76 _ result: A difference in the amount of speakers, data preparation and gender
Spontaneous speech no tones | 23.27 | - TDNN-OPRU performs better without | istribution in the training set.

Table 2: Achieved PER on different types of tone information.

sheoch - However, similar results were obtained in the research of a colleague with the

TDNN-BLSTM network.

- TDNN-OPGRU appears to perform worse than on Dutch. It performs better on
spontaneous speech in Mandarin, and better on prepared speech in English.

- There is very little overlap between error-prone phonemes in Mandarin and
Dutch?, indicating how that TDNN-OPGRU has difficulties with different aspects.

- The removal of tone information has a similar impact on the PER for both prepared
and spontaneous speech.

data set Tone error rate data set substitution %
Prepared speech 27.48 Prepared speech 25.94 I
Spontancous speech 20.42 Spontancous speech 25.99 6 . CO n CI u S I O n

Table 3: Tone error rate for prepared and

Table 4: Percentage of substitutions caused
spontaneoush speech

by tone-only errors
- Tone error is higher in spontaneous speech than in prepared speech.
- The percentage of errors that are tone-only is similar between the types of speech.

- The TDNN-OPGRU architecture obtains a PER of 39.99% on prepared speech
and a PER of 30.76% on spontaneous speech.

- The phonemes N, UW, NG, ER and AH are error-prone phonemes when decoding
with the TDNN-OPGRU architecture.

Type of speech Error-prone phonemes

Prepared speech N | UW | NG | ER | AH | AW | AE
Spontaneous speech | N | UW | NG | ER | AH | D AA
Table 5: Error-prone phonemes for prepared and spontaneous speech

- Five phonemes are error-prone’ for both prepared and spontaneous speech.

- Tone errors make up a substantial amount of the errors during decoding, but do
not impact the difference in PER between prepared and spontaneous speech.
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3. Method

1. Prepare data for phoneme recognition
@ <o Lexicon.txt

[JIYLI N1 TIY1 AE1 N1JSH AH2 N2 M ER5|R 1Y4 Z IY5|
Figure 1: Using the lexicon to replace characters with phoneme sequences

2. Extract features and generate forced alignments

- —

(mfcc + pitch) /J//iyllr}lllt/

Figure 2: Using a GMM-HMM? to create forced alignments for TDNN-OPGRU training
3. Optimize neural network on prepared speech development set

4. Train and evaluate neural network test sets for prepared and spontaneous
speech with and without tone information

/. Future work

- A better PER could be obtained by testing the TDNN-OPGRU network with larger
training sets

- The impact of the imbalance in gender distribution on the prepared speech should
be investigated.

- More value can be gained when looking at tone and base phonemes combined
rather than separated®
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