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1. Introduction
• Programming synthesis [3] is the task of 

searching for a program satisfying a set of 
examples.

• The search space of this problem consist 
of all possible programs that can be 
constructed from a given context-free 
grammar.

• Enumerative programming synthesis 
quickly becomes intractable.

• Divide and conquer techniques [1,2] on 
the set of examples has been proven to be 
effective.

• Can a similar strategy be applied to a 
problem’s context-free grammar?

How can an arbitrary context-free grammar 
be split in subgrammars that can make the 

synthesis of programs more efficient?

1. How can a context-free grammar be split 
into smaller subsets?

2. How to learn a program from a set of 
subgrammars?

3. How to determine which subgrammars to 
combine to find a solution?

2. Methodology
Splitting Grammar

• A problem's context-free grammar is 
converted into a dependency graph.

• Each node stands for a symbol, and every 
edge represents a set of rules.

• For every rule, a subgrammar is created by 
finding the shortest path from the starting 
rule to a set of terminals by travelling 
through the edge of that rule.

• Grammars that are subsets or duplicates 
of others are not considered, otherwise 
their programs will be run multiple times.

Exploring Subgrammars
• All possible combinations of 𝑛 grammars 

will be assigned a score from 0 to 1 based 
on how many examples programs 
generated by them can solve.

Figure 1: Simple context-free grammar

Figure 2: Dependency graph

Figure 2: Generated subgrammars

Exploiting Subgrammars
• Each grammar receives a fraction of the 

enumerations based on its score divided 
by the sum of all scores.

3. Experimental Setup and Results
• The program iterator is implemented in 

HerbSearch.jl1.
• This repository is part of Herb.jl2 which is a 

program synthesis library written in Julia.
• Our GrammarSplittingIterator will be 

compared against the BFSIterator.
• HerbBenchmarks.jl3 provides us with a 

collection of benchmarks for testing the 
iterators.

• We will use the PBE SLIA Track 2019 from 
the SyGuS competition, which includes 
100 string-manipulation problems

• Our iterator will use the Levenshteinedit 
distance metric to give grammars partial 
points, as most examples consist of string 
outputs.

• The grammars from the 100 benchmarks 
have 27 rules on average and each 
consistently split into either 8 or 9 
subgrammars using our iterator.

• Both iterators are allowed a maximum of 
10 million program enumerations per 
problem.

• The GrammarSplittingIterator will 
run with 𝑛 = 3 and 5% of the 
enumerations will be used for exploration.

4. Discussion
• The GrammarSplittingIterator uses 

on average 7 times more iterations than 
the BFSIterator.

• In the medium sized problems where the 
solution is synthesized in the exploitation 
phase, our iterator performs better when 
the right context-free grammar is run first.

• It was able to synthesize a program in 0.38 
times the enumerations compared to BFS.

5. Responsible Research
• This experiment can be reproduced as the 

iterator as well as the benchmarks are all 
in the open-source Herb.jl framework.

6. Conclusion
• The GrammarSplittingIterator 

performs worse than BFSIterator.
• Running it in parallel could potentially let 

our iterator exceed the BFSIterator.

7. Future Work
• Make the GrammarSplittingIterator 

run in parallel.
• Add constraints that prevent duplicate 

programs as much as possible
• Continue experimenting with different 

merging strategies
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Figure 5: Performance on 
PBE SLIA Track 2019
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