
Splitting Context-Free Grammars to 
Optimize Program Synthesis 

Responsible Professor
Sebastijan Dumančić Dennis Heijmans | D.Heijmans@student.tudelft.nl

Supervisor
Reuben Gardos Reid

June 21, 2024

1. Introduction
• Programming synthesis [3] is the task of 

searching for a program satisfying a set of 
examples.

• The search space of this problem consist 
of all possible programs that can be 
constructed from a given context-free 
grammar.

• Enumerative programming synthesis 
quickly becomes intractable.

• Divide and conquer techniques [1,2] on 
the set of examples has been proven to be 
effective.

• Can a similar strategy be applied to a 
problem’s context-free grammar?

How can an arbitrary context-free grammar 
be split in subgrammars that can make the 

synthesis of programs more efficient?

1. How can a context-free grammar be split 
into smaller subsets?

2. How to learn a program from a set of 
subgrammars?

3. How to determine which subgrammars to 
combine to find a solution?

2. Methodology
Splitting Grammar

• A problem's context-free grammar is 
converted into a dependency graph.

• Each node stands for a symbol, and every 
edge represents a set of rules.

• For every rule, a subgrammar is created by 
finding the shortest path from the starting 
rule to a set of terminals by travelling 
through the edge of that rule.

• Grammars that are subsets or duplicates 
of others are not considered, otherwise 
their programs will be run multiple times.

Exploring Subgrammars
• All possible combinations of 𝑛 grammars 

will be assigned a score from 0 to 1 based 
on how many examples programs 
generated by them can solve.

Figure 1: Simple context-free grammar

Figure 2: Dependency graph

Figure 2: Generated subgrammars

Exploiting Subgrammars
• Each grammar receives a fraction of the 

enumerations based on its score divided 
by the sum of all scores.

3. Experimental Setup and Results
• The program iterator is implemented in 

HerbSearch.jl1.
• This repository is part of Herb.jl2 which is a 

program synthesis library written in Julia.
• Our GrammarSplittingIterator will be 

compared against the BFSIterator.
• HerbBenchmarks.jl3 provides us with a 

collection of benchmarks for testing the 
iterators.

• We will use the PBE SLIA Track 2019 from 
the SyGuS competition, which includes 
100 string-manipulation problems

• Our iterator will use the Levenshteinedit 
distance metric to give grammars partial 
points, as most examples consist of string 
outputs.

• The grammars from the 100 benchmarks 
have 27 rules on average and each 
consistently split into either 8 or 9 
subgrammars using our iterator.

• Both iterators are allowed a maximum of 
10 million program enumerations per 
problem.

• The GrammarSplittingIterator will 
run with 𝑛 = 3 and 5% of the 
enumerations will be used for exploration.

4. Discussion
• The GrammarSplittingIterator uses 

on average 7 times more iterations than 
the BFSIterator.

• In the medium sized problems where the 
solution is synthesized in the exploitation 
phase, our iterator performs better when 
the right context-free grammar is run first.

• It was able to synthesize a program in 0.38 
times the enumerations compared to BFS.

5. Responsible Research
• This experiment can be reproduced as the 

iterator as well as the benchmarks are all 
in the open-source Herb.jl framework.

6. Conclusion
• The GrammarSplittingIterator 

performs worse than BFSIterator.
• Running it in parallel could potentially let 

our iterator exceed the BFSIterator.

7. Future Work
• Make the GrammarSplittingIterator 

run in parallel.
• Add constraints that prevent duplicate 

programs as much as possible
• Continue experimenting with different 

merging strategies

8. References
[1] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling Enumerative 
Program Synthesis via Divide and Conquer. In Axel Legay and Tiziana Margaria, 
editors, Tools and Algorithms for the Construction and Analysis of Systems, volume 
10205, pages 319–336. Springer Berlin Heidelberg, Berlin, Heidelberg, 2017. ISBN 
978-3-662-54576-8 978-3-662-54577-5. doi: 10.1007/978-3-662-54577-5 18. URL 
https://link.springer.com/10.1007/978-3-662-54577-5 18. Series Title: Lecture Notes 
in Computer Science.

[2] Andrew Cropper. Learning Logic Programs Though Divide, Constrain, and Conquer. 
Proceedings of the AAAI Conference on Artificial Intelligence, 36(6):6446–6453, June 
2022. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v36i6.20596. URL 
https://ojs.aaai.org/index.php/AAAI/article/view/20596.

[3] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program synthesis. 
Number 4.2017, 1-2 in Foundations and trends in programming languages. Now 
Publishers, Hanover, MA Delft, 2017. ISBN 978-1-68083-292-1

[4] Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing 
Surveys, 33(1):31–88, March 2001. ISSN 0360-0300, 1557-7341. doi: 
10.1145/375360.375365. URL https://dl.acm.org/doi/10.1145/375360.375365

1https://github.com/Herb-AI/HerbSearch.jl
2https://herb-ai.github.io/
3https://github.com/Herb-AI/HerbBenchmarks.jl

Figure 5: Performance on 
PBE SLIA Track 2019


	Untitled Section
	Slide 1


