
Author: Sam Streef (S.L.Streef@student.tudelft.nl) Supervisors: Jaro Reinders & Cas van der Rest Professor: Casper Poulsen

Improving the quality of code in IO intensive applications through effect handlers

Effect Handler Oriented Programming (EHOP) is a programming
paradigm that provides a separation of concerns by abstracting
code into effects and effect handlers.

An effect is a definition of operations that can be used in a
function that is using this effect.

An effect handler is an implementation of the operations of an
effect.

Multiple effects can be used in a function and the effect handlers
that run an effect determine its implementation and
functionality.

1. Background

Definition of a Logging effect and two effect
handlers in Haskell using the Polysemy library.1

Using the Logging effect with different
implementations.2

How does EHOP affect modularity, readability and maintainability of code for
IO intensive applications when compared to implementations not using EHOP?

• Does EHOP improve the readability of code?
• Does EHOP improve the maintainability of code?
• Does EHOP improve the modularity of code?
• Does EHOP improve the response time of IO intensive applications?
• Does EHOP increase the memory usage of IO intensive applications?

2. Research Questions

3. Method

Execution of the experiments

Building a basic HTTP server from a TCP socket in Haskell whilst;
• Using effect handlers
• Not using effect handlers
(The Polysemy library is used for effect handlers)

Evaluation of the experiments:

• Compare the readability, maintainability and modularity of the programs
• Measure the response time of each program
• Measure the memory usage of each program

Performance benchmarks run POST requests with a payload to an endpoint on the HTTP
server that sends the payload in reverse back.

4. Quantitative results

The results show that EHOP has a memory usage
overhead compared to the traditional paradigm.2

5. Qualitative results

The results show that EHOP has a response time
overhead compared to the traditional paradigm.1

Readability

+ Effect signatures and effect handlers show the functionality of a function.

+ Monads such as state can be used and combined with other monads in a
single do notation, reducing lines of code.

Maintainability

+ Using effects allows for changing effect behavior dynamically by using
different effect handlers. Functions with effects can be tested with simple
handlers whilst application code uses a different handler.

+ Effects can have operations added or changed whilst keeping the
application type correct.

Modularity

+ Code can be written type correctly by only having an effect available and
without an effect handler.

+ Effects are backwards compatible if functionality is added.

--

All these results are based on the effects for buffering, logging, file reading
and request handling.

CSE3000 : Research Project https://github.com/sstreef/research-project 2022-06-24

6. Conclusion

For IO intensive applications such as an HTTP server:

• EHOP can improve readability, maintainability and
modularity.

• EHOP adds a performance overhead in both memory and
runtime.

However, since IO intensive applications are performance
driven, the improvement in quality of code that EHOP provides
does not outweigh the overhead that it adds.

7. Future work

Extensions to this work could be made by:

• Running the same experiments in a language with effects and
effect handlers built-in

• Running the experiments for a different application such as a
serial communication application.

• Analyzing the experiments with more concise metrics such as
cyclomatic complexity, coupling and cohesion.

