Improving the quality of code in IO intensive applications through effect handlers

Author: Sam Streef (S.L.Streef@student.tudelft.nl)

Supervisors: Jaro Reinders & Cas van der Rest

]
TUDelft

Professor: Casper Poulsen

1. Background

Effect Handler Oriented Programming (EHOP) is a programming
paradigm that provides a separation of concerns by abstracting
code into effects and effect handlers.

An effect is a definition of operations that can be used in a
function that is using this effect.

An effect handler is an implementation of the operations of an
effect.

Multiple effects can be used in a function and the effect handlers
that run an effect determine its implementation and
functionality.

6. Conclusion

For 10 intensive applications such as an HTTP server:

e EHOP canimprove readability, maintainability and
modularity.

e EHOP adds a performance overhead in both memory and
runtime.

However, since |0 intensive applications are performance
driven, the improvement in quality of code that EHOP provides
does not outweigh the overhead that it adds.

Extensions to this work could be made by:

* Runningthe same experiments in a language with effects and
effect handlers built-in

* Running the experiments for a different application such as a
serial communication application.

* Analyzing the experiments with more concise metrics such as
cyclomatic complexity, coupling and cohesion.

-- Effect program :: Sem '[Logging, Embed I0] ()
data Logging m a where program = do
Log :: String -> Logging m () log "Hello "
log "World!"
-- Polysemy function generating effect operations
makeSem ''Logging main :: I0 O

main = program -- [Logging, Embed IO]

-- Effect handlers & runConsolelogging -- [Embed IO]

type LoggingHandler = Sem '[Logging, Embed IO] () & runM = 0]
-> Sem '[Embed I0] (O
main' :: I0 O

runConsoleLogging :: LoggingHandler main' = program -- [Logging, Embed IO]
runConsoleLogging = interpret $ embed . \case & runFileLogging -- [Embed IO]

Log s -> putStr s & runM == (I
runFTIELogg?ng G .Loggmgl-landler e Using the Logging effect with different
runFilelLogging = interpret $ embed . \case . .

implementations.

Log s -> appendFile "log.txt" s

Y
\ c Definition of a Logging effect and two effect f = do

~

:: Sem '[Logging, State (Maybe String)] ()

handlers in Haskell using the Polysemy library. Logging.leg (...)

How does EHOP affect modularity, readability and maintainability of code for
|0 intensive applications when compared to implementations not using EHOP?

e Does EHOP improve the readability of code?

e Does EHOP improve the maintainability of code?

e Does EHOP improve the modularity of code?

e Does EHOP improve the response time of 10 intensive applications?
e Does EHOP increase the memory usage of |0 intensive applications?

e

Execution of the experiments

Building a basic HTTP server from a TCP socket in Haskell whilst;
¢ Using effect handlers
* Not using effect handlers

(maybeString :: Maybe String) <- State.get
(The Polysemy library is used for effect handlers)
A Evaluation of the experiments:
5. Qua||tat|ve results ¢ Compare the readability, maintainability and modularity of the programs
N * Measure the response time of each program
Readability * Measure the memory usage of each program
+ Effect signatures and effect handlers show the functionality of a function. Performance benchmarks run POST requests with a payload to an endpoint on the HTTP
+ Monads such as state can be used and combined with other monads in a ==s-s-seses: server that sends the payload in reverse back.
single do notation, reducing lines of code.
Maintainability
+ Using effects allows for changing effect behavior dynamically by using 4. Quantitative results
different effect handlers. Functions with effects can be tested with simple
handlers whilst application code uses a different handler. P — £HoP W Tradtonal
+ Effects can have operations added or changed whilst keeping the N o N -
application type correct. - s88ms se6MB
: — P N v ' a55MD
Modularity s e E -
SOKB £ 3 :
+ Code can be written type correctly by only having an effect available and e H "Mmr
without an effect handler. B : wows
+ Effects are backwards compatible if functionality is added. L 1 P

All these results are based on the effects for buffering, logging, file reading
and request handling.

The results show that EHOP has a response time
overhead compared to the traditional paradigm.

The results show that EHOP has a memory usage
overhead compared to the traditional paradigm.

CSE3000 : Rese

sstreef/research-project

https://github.co

