
Novel compression techniques like XTC can be 
adapted to GPT-style models. This shows promise 
for compression on powerful GPUs, after which a 
model can be deployed locally. However, we identi-
fy key limitations in our findings:

Limited computing power restricts us to only 1 Limited computing power restricts us to only 1 
compression epoch, with a ten-fold faster learning 
rate. The below loss curves indicate volatile train-
ing, especially for the hybrid model. It would be 
worthwhile for subsequent studies to use the in-
tended 18-epoch knowledge distillation.

The in-training nature of XTC means that the stu-
dent model has to be retrained, which is computa-
tionally expensive. Especially for quantisation, 
future research could investigate hybrid post-train-
ing approaches.
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15x
Size Reduction

84%
Accuracy Retention

Baseline Layer Reduced Quantised Hybrid

Hybrid layer reduction and quantisation can com-
press the 510 MB baseline model into 32 MB, while 
retaining 84% of the original accuracy. 

Layer reduction nets a 2x inference speedup, and 
quantisation allows for a 12x compression alone. 

Disk Size Reduction Factor
Loss Over 1 Compression Training Epoch

Results

Exact Match
Percentage of per-
fect responses.

Edit Similarity
Measure based on 
how many single- 
character edits are 
required to fix the 
output.

We evaluate the baseline and compressed models 
on the CodeXGLUE3 benchmark test for line-level 
code completion, consisting of two metrics.
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To serve as a compression baseline, we fine-tune 
CodeGPT 3 for code-completion on 150K Python 
files4. We then create three compressed models:
a quantised model; a 6-layer reduced model; and a 
hybrid model combining both techniques.

Lightweight Layer Reduction
Remove every other layer from the student’s    
decoder stack.

Extreme Quantisation
Convert FP32 parameters in the student model 
to 1-bit weights and 8-bit activations.

XTC consists of the following two steps facilitated 
by knowledge distillation: training a smaller student 
model from the outputs of a larger teacher model.

Compression Method

  Parameter Count of Code-
  Generation Models1, in Millions

CodeGPT

124 M

1 500 M

2 700 M

12 000 M

CodeParrot PolyCoder CodeX

Compressing language models for resource-con-
strained devices is thus an active area of research. 
Notably, the XTC (extreme compression) pipeline 
achieves a 50x size reduction while maintaining 
97.3% of the original model’s accuracy2. We adapt 
XTC for a GPT-style code-generation model. 

Large Language Models are increasingly prominent 
due to their human-like language capabilities. This 
led to the emergence of ‘pair-programmer’ tools, 
which assist developers by providing code au-
to-completion. However, their growing size makes 
them prohibitively expensive to run locally.
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