
Author:
Sergiu-Nicolae Stancu

s.n.stancu@student.tudelft.nl
Responsible professor and supervisor:

Lilika Markatou

A Comparative Study of Privacy-Preserving
Computation Techniques

 Contrasting ORAM, MPC, TEEs, Structured Encryption, and Homomorphic Encryption

Introduction

Background and Motivation

Main ORAM Techniques

Research Questions

Comparison of ORAM with MPC, TEE, StE and
FHE

Discussion

Conclusion

References

As the world increasingly relies on cloud and outsourced storage, a
concern over the security of this practice arises. It was shown that a
malicious server can infer up to 80% of the search queries, just by
looking at the data access patterns.

Oblivious Random Access Machines aim to tackle this problem by
hiding the data acccess pattern, such that an adversary will not be able
to distinguish between a fake and a real program, having the same
length.

ORAM was first proposed by Goldreich and Ostrovsky [2], which
provided some foundational research, but failed to come up with a
feasible implementation, due to high worst-case access costs. However,
newer techniques were proposed that

 made ORAM practical today.
Homomorphic Encryption, Structured

 Encryption, Multi-Party Computation and
 Trusted Execution Environments are
 other techniques aiming to preserve pri-
 vacy and allow for computations on en-
 crypted data.

The literature survey was conducted
 using the Snowball Sampling Method.

Technique Computation Parties Applicability
Use

cases
Threat
model

Leakage Overhead

ORAM Data access
Client(s)-
Server(s)

Used in secure
processors +

oblivious DBs

SGX
integration,
ObliDB [3],

Signal

Semi-
honest or
malicious

Through side-
channels

Logarithmic

FHE Any computation Client-Server
Implemented

in open-source
libraries

Sensitive data
analysis,

Recommend
er systems

IND-CCA2
Adaptive

attack
None

High: impractical
at the moment

StE
Specific data access
on encrypted data

structures

Non-
interactive

Client-server

Practical
protocols for

specific
structures

Encrypted
DBMS

Semi-
honest

Access
patterns and

response
volumes

Sublinear

MPC Generalized
computation

Distributed
parties

Used in
practice with

limitations

Secure
Auctions,

DNA
comparison

Semi-
honest or
malicious

Only function
output

Constant or
Linear

TEE Any computation

Interactive
Client-Server
+ attestation

service

Can be used in
cloud

deployment

Data
analytics,
Trusted AI
workloads

Malicious
OS on the

server

Access
patterns +

plaintext in
CPU

Near-native
performance

How did ORAM evolve and reach the current state it is in?
Where does ORAM fit in the context of Privacy-Preserving
Computation and how does it compare/complement other
techniques such as HE, SE, TEE and MPC?

There have been multiple improvements to ORAM. These are some of the most notable:

Newer techniques manage to achieve better asymptotics, but may be less practical due to hidden
constants. Other techniques use FHE to minimize bandwidth, but the server becomes a bottle-neck.

[1]"Oblivious RAM (ORAM) Research," Secure Computation Lab, University of Connecticut. [Online]. Available:
https://scl.engr.uconn.edu/research/oram.php. [Accessed: Jun. 21, 2025]
[2] O. Goldreich. Towards a theory of software protection and simulation by oblivious RAMs. In Proceedings of the nineteenth annual ACM conference
on Theory of computing- STOC’87, pages 182–194, New York, New York, United States, 1987. ACM Press.
[3] Saba Eskandarian and Matei Zaharia. ObliDB: obliv ious query processing for secure databases. Proceed ings of the VLDB Endowment, 13(2):169–183,
October 2019.
[4] Emil Stefanov, Elaine Shi, and Dawn Song. Towards practical oblivious ram. 2012.
[5]Elaine Shi. Oblivious RAM with O((log N)3) Worst Case Cost.
[6] Michael T. Goodrich and Michael Mitzenmacher. Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation. In Luca Aceto, Monika
Henzinger, and Ji ˇ r´ ı Sgall, editors, Automata, Lan guages and Programming, volume 6756, pages 576 587. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011. Series Title: Lecture Notes in Computer Science.
[7]Emil Stefanov, Marten van Dijk, Elaine Shi, T-H. Hu bert Chan, Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. Path oram: An
extremely simple oblivious ram protocol. Journal of the ACM (JACM), 65(4):1–26, 2018.
[8]Ling Ren, Christopher W Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten van Dijk, and Srinivas Devadas. Ring ORAM: Closing the Gap
Between Small and Large Client Storage Oblivious RAM.
[9]Jonathan Dautrich and Elaine Shi. Burst ORAM: Mini mizing ORAM Response Times for Bursty Access Pat terns.
[10] Signal. Signal contact discovery, 2024. Accessed: 2025-06-17.
[11]Victor Costan and Srinivas Devadas. Intel SGX Ex plained, 2016. Publication info: Preprint.

Figure 1: Insecure Model of outsourcing storage [1]

Figure 2: Hierarchical ORAM [2]

Z - parameter referring to the number of blocks in a tree node, Õ hides poly loglog terms
Figure 2: Overview of some significant ORAM constructions

[2]
[4]

[5]

[7]

[7]
[8]
[9]

Path ORAM[7] was one of the most influential papers in the field thanks
to its simplicity, low amortized and worst-case overhead and the low
hidden constants.

Path ORAM has found multiple other real-world applications. Most
notably, it is already being used in the Signal messaging app [10], for
private contact discovery, along Intel SGX[11].

StE can also be complemented by ORAM to hide the data access
patterns and minimize its leakage.

.
There are also oblivious query processing engines that implemented
Path ORAM, such as ObliDB[3].

ORAM has made huge improvements over the years and has taken
many steps forward to become a practical and usable scheme for
hiding data access patterns. In addition it can be optimized for
different use cases, making it suitable for different scenarios.
However, it still incurs a significant overhead and can not be adopted
by time-sensitive applications. Future advancements in FHE can make
ORAM a practical solution for all use-cases.
Multiple techniques for privacy-preserving computation have been
presented, but there is no technique which solves all problems. A user
needs to prioritize and decide based on what is most important for
them, balancing security, functionality, efficiency and usability for each
individual scenario.

[6]

