

# Improving Test Case Generation for RESTful APIs through Seeded Sampling

Chiel de Vries

Date:June 25th 2020Course:CSE3000Supervisors:A. PanichellaM.J.G. OlsthoornP. Pawelczak

# 1. Context

Background:

- Automated testing of RESTful APIs
  with EvoMaster
- White-box Testing
- Evolutionary algorithm
- Existing sampling methods:
  - Random sampling
  - Smart Sampling

Goal:

resources

Improve the coverage achieved by test suites generated with EvoMaster by exploiting manually-written test cases.

# 2. Seeded Sampling

The elements of seeded sampling:

- Parser: parses test cases to internal representation
- Sampler: Clones or carves from parsed test cases

#### Terms:

Cloning: Copy a parsed test Carving: Extract RGS and add random elements RGS: Resource Generating Sequence, a sequence of POST/PUT requests



Terms:

**RESTful API:** Webservice using HTTP

requests and responses to handle

Seeding: Using previous knowledge

Sampling: Initialization of tests

## 3. Evaluation

### **Research Question:**

To what extent can seeded sampling improve coverage compared to the current combination of sampling techniques used by EvoMaster?

#### Evaluation settings:

- Tested on 2 APIs
- 7 Parameter sets used
- 10 repetitions per set
- Runs of 5 minutes

#### Parameter Set:

A set of probabilities for sampling  $P_{random}$ : Random sampling  $P_{smart}$ : Smart sampling  $P_{seeded}$ : Seeded sampling  $P_{clone}$ : Cloning  $P_{carve}$ : Carving  $P_{clone}$  and  $P_{carve}$  are the probabilities given seeded sampling is chosen

### Result:

Better performance when P<sub>seeded</sub> is low (< 0.4). However improvements are small. Coverage is improved by no more than 2 percent points



## 4. Limitations

#### Internal:

- Simple parser
- Few repetitions

### External:

Few Apis tested