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Are there possible scenarios in which models based on simpler network
structures are more effective than GNNs in traffic forecasting?

The goal of traffic forecasting is to predict future traffic states using
historical data and road network structure [2]. This task is crucial for
improving urban transport systems and reducing congestion and
pollution.

Traditionally, simple statistical or neural network-based models have
been used for traffic forecasting, but they often have difficulty
capturing complex traffic patterns [1]. Recently, more advanced
methods such as Graph Neural Networks (GNNs) have been introduced,
achieving promising results. 

The key difference between GNNs and other models is that GNNs take
graphs as input. In these graphs, sensors installed on roads (such as
loop detectors) act as nodes, and the roads themselves serve as edges.

Although they achieve very accurate predictions, GNNs are complex
and costly to train raising questions about their necessity in all traffic
forecasting scenarios, especially when simpler models can be effective
in less demanding conditions.

Initial Hypothesis: LSTM models should achieve comparable performance to GNN models in traffic scenarios where spatial interconnections are
minimal, such as highways with few intersections, and the number of available sensors is limited.

[1] Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey.
CoRR, abs/2101.11174, 2021.

The experiments focused on traffic forecasting tasks using popular benchmark datasets containing
traffic speed data. They investigated scenarios in which simpler LSTM could perform comparably to
more complex DCRNN.

Considered scenarios:
Different numbers of sensors: (35, 20, 10, 5, 1 sensors) 
Different prediction horizons*: (5, 10, 15 minutes) 
Different sensors distribution: 

Sensors placed on the same road (red area on the maps)
Sensors placed on different roads with shared crossroads (blue area on the maps)

3. Models 
DCRNN: Diffusion Convolutional Recurrent Neural Network, a GNN
model that incorporates both spatial and temporal dependencies.
DCRNN explicitly models traffic as a diffusion process over a road
graph, reflecting the actual structure and dynamics of the road
network [2].

LSTMs: Long Short-Term Memory Networks, a type of Recurrent
Neural Network (RNN) capable of learning and remembering  long
sequences of data. One of the most popular models for traffic
forecasting before GNNs era.

[2] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting, 2018.
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*The horizon is the number of
future time steps that the
model tries to predict.

7.  FUture work
Hyperparameter Optimization: Further development should include optimising
the hyperparameters of LSTM models to improve their performance. Tuning
parameters such as the number of layers or LSTM hidden state units and
dropout rates could close the performance gap with DCRNN.
Comparison of Other Models: Future research should also consider comparing
other GNNs and simpler network models like Fully Connected Long-Short Term
Memory networks [3].

[3] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In NIPS, pp. 3104–3112, 2014.
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Figure 1: Sensors from METR-LA dataset Figure 2: Sensors from PeMS-BAY dataset

5.  Results

Figure 3: Average difference of models’ performance in different
prediction horizons on different roads. DCRNN systematically increases
its lead in each metric over LSTM  with an increasing horizon. However,

this increase is smaller in METR-LA, where both models performed worst
on average. 

Figure 4: Difference in models’ performance for varying numbers of
sensors on the same road for horizon 1. The difference in performance

decreases as the number of sensors decreases. This shows a relationship
between these differences and the number of sensors used. 

Figure 5: Average epoch training times (in seconds) for DCRNN
and LSTM models (with 256 and 50 hidden state units) across three

subsets of sensors.

DCRNN: Consistently outperformed LSTM under scenarios with
a higher number of sensors and longer prediction horizons.

LSTM: Performed comparably to DCRNN in a scenario where the
number of sensors was limited and for the closest prediction
horizon.

Impact of Sensor Distribution: Interestingly, the LSTM
performed closer to the DCRNN when the sensors were placed
along different intersecting roads rather than on the same road.
This was contrary to the initial hypothesis.

Training times: The analysis showed that DCRNN training time is
very sensitive to the number of sensors, increasing rapidly as
their number increases.  On the other hand, the training time of
the LSTM depends strongly on the number of LSTM hidden
state units used in a model. Once the optimal configuration of
hyperparameters is found, LSTM has a significant advantage
over DCRNN in terms of training time.


