Increase of long-term success ratio using novel splitting methods in Interdimensional SpeedyMurmurs

Background

- Popular cryptocurrencies lack scalability (low transaction throughput).
- Payment channel networks (PCN's) try to increase scalability.
- . PCN's have frequent payment failures.
- Interdimensional SpeedyMurmurs (INTSM)[1] increases the success ratio by allowing intermediaries in the PCN to split transactions.
- INTSM combined with several splitting methods achieved a big increase of success ratio in the short term.

Research Questions

How do the current splitting methods fare in the long term? How can novel splitting methods increase the long term success ratio?

Novel Splitting Methods

- Split Distance Look-Ahead Capacity (SDLC):
 Dist often has ties. SDLC improves upon Dist by splitting
 ties by preferring channels with a higher total outgoing
 capacity.
- Split Distance Look-Ahead Balance (SDLB):
 Dist often has ties. SDLC improves upon Dist by splitting ties by preferring channels with a higher total outgoing balance.
- Split If Necessary Distance (SND):
 Iterates over all possible subsets of size k where k is the minimal amount of splits needed to perform the transaction. Selects the subset with closest additive distance receiver.

Results

INTSM-Dist 66.0% 65.0% 64.0% 63.0% 62.0%			
otter second offense 63.0%		_	•
63.0%	Success ratio	65.0%	
		64.0%	
62.0%		63.0%	
		62.0%	

References

[1] L Eckey, S Faust, K Hostáková, S Roos: Splitting Payments Locally While Routing Interdimensionally .

Method

- Simulate protocol with old and novel splitting methods.
- Using a snapshot of a real-world used
 PCN (Lightning) as data.
- Transactions and channel capacities modeled with exponential distributions.
- Network balance changes remain on the network for every subsequent transaction.

R

3

- SDLC: In combination with HOP
 initially an increase of 6% but
 eventually converged back to
 normal. With INTSM a con sistent 0.8% increase was
 achieved.
- **SDLB:** With HOP a large increase of 11.6% was maintained. With INTSM an increase of 1.8%.
- **SND:** No change with HOP, with INTSM and increase of 0.7%

IURS Han Heijmans - h.a.heijmans@student.tudelft.nl Supervisors: Stephanie Roos, Oguzhan Ersoy

Current Splitting Methods

- 1.INTSM-IfN: Splits the transaction only when necessary.
- 2.INTSM-Dist: Splits the transaction over the nodes closest to the receiver.
- 3.INTSM-No: Does not split.
- 4.Hop-Dist: Less flexible hop distance.

Conclusions

The new splitting methods show a slight increase over the previous methods with **SDLB** performing best overall.

TUDelft