

## **Background Information**

- Dependent types are valuable
- Allow program verification
- Add precision to types
- Implementing dependent type theory is difficult
- Difficulty in implementing the conversion checker Type equality depends on term equality [1]
- Conversion checker must also check for term equality
- Gap in literature: no existing overview and comparison of implementation techniques

## **Research Questions**

## **Research Question**

What different implementation techniques for conversion checking of dependent types have been proposed in the literature?

## Sub-questions

- What are the advantages and disadvantages of different implementation techniques
- Under what circumstances are certain existing implementation techniques recommended over others?

## Method

- Literature survey on existing implementation methods
- Techniques compared on:
- Portability
- Simplicity
- Efficiency
- Decidability

Supported Features

http://repository.tudelft.nl/

# **Dependent Types and Conversion Checking:** Literature survey on implementation techniques for type systems

Author: Maria Khakimova

Responsible Professor: Jesper Cockx Supervisor: Bohdan Liesnikov



Figure 1. A visual representation of the identified algorithms

## **Discussion on Features**

- Portability & Simplicity: Often less efficient Extendibility: Should verify type system compatibility • Efficiency: Some techniques have been designed for performance, but may come with significant overhead
- **Decidability:** Usually favoured, but there are exceptions

## **Comparison of Technique Features**

Table 1. Technique features (lighter is better, - indicates lack of data)

|       | Ρ | EX | S | EF | D | SNT |
|-------|---|----|---|----|---|-----|
| Naïve | - | -  |   |    |   | -   |
| NbEU  |   |    |   |    |   |     |
| NbET  |   |    |   |    |   |     |
| ESAC  |   |    |   |    |   |     |
| EDESA |   |    |   |    |   |     |
| SRZAM |   | -  |   |    |   |     |
| AAM   | 1 | -  | - |    |   |     |
| NbTO  |   | -  |   |    |   |     |
| NbHS  | - | -  |   |    |   |     |
| DH    | - | -  | - | -  |   |     |
| CC    | - | -  | - | -  |   |     |

P = Portability, EX = Extendibility, S = Simplicity, EF = Efficiency,**D** = Decidability, **SNT** = Supports non-termination

- Some techniques may have been missed

There are many existing techniques, choice depends on what is wanted from conversion checker.

2019.



## Limitations

Most judgements and comparisons are subjective

## Conclusion

## References

[1] Daniel Gratzer, Jonathan Sterling, and Lars Birkedal. Implementing a modal dependent type theory. Proceedings of the ACM on Programming Languages, 3:29, 8

m.khakimova@student.tudelft.nl