

Learning Curve Extrapolation using Machine Learning

Authors Pratham Johari <u>p.johari@student.tudelt.nl</u>

Supervisor Mr. Tyalen Dr. Tom Viering

xkcd: Extrapolating

References

- Mohr, F., T. J. Viering, M. Loog and J. N. Van Rijn (2023). LCDB 1.0: An Extensive Learning Curves Database for Classification Tasks, Springer Nature Switzerland: 3-19.
- Adriaensen, S., H. Rakotoarison, S. Muller and F. Hutter (2023). "Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks."
- Github Repo url : https://github.com/pratham2442000/BachelorThesis
- Poster template taken from https://templatelab.com/research-posters/

- Learning curves show model performance with varying data sizes.
- Determining the optimal amount of data for a model is beneficial.
- Existing **Parametric models** may not capture real-world curve complexity.
- Research focuses on Learning Curve Prior-Data Fitted Networks.
- Idea is to use LCDB¹ tests LC-PFN's² ability to extrapolate learning curves.

2

What are the benefits and limitations of using LC-PFN for learning curve extrapolation and how does it compare to other methods?

Database

Machine Learning Model

Model Breakdown

Background

Research question

lethodology

• Utilization of Learning Curve Database (LCDB). • Focus on the validation curve set (4367 Curves). • Preprocessing involves aggregating curves per dataset and learner pair and converting dataset size into percentages.

Employment of the Learning Curve Prior Fitted Network (LC-PFN), a transformer pre-trained on synthetic data.

 LC-PFN trained on right-censored curves from a parametric prior showcasing model accuracy vs epoch; different from the learning curves examined we look at.

Model Evaluation Parameters

• Evaluation metric: **Mean Squared Error** (MSE). Cutoff percentages for extrapolation: 10%, 20%, 40%, and 80%.

 Incorporation of baseline models (last1 and **mmf4)** for comparison.

• Model Breakdown is defined by verifying **40%** target accuracies outside the LC-PFN's 90% confidence interval.

 Investigation of breakdown cases by grouping curves by learner and dataset, assessing whether the model tends to overestimate or underestimate accuracies for points outside the expected Cl.

Cutoff	10%	20%	40%	80%
last1	0.0053	0.0032	0.0016	0.0007
mmf4	0.0091	0.0048	0.0029	0.0022
LC-PFN	0.0032	0.0021	0.0013	0.0009

LC-PFN Model Shortcomings

• LC-PFN demonstrated superior performance at lower cutoffs and remained competitive at higher values.

cutoffs.

- Observed consistent underperformance on specific learners, notably SVC_sigmoid.
- No clear pattern in failing curves when grouped by datasets, though datasets ID 346 and 1465 exhibited worse performance in some cases

Results

LC-PFN Model Performance Assessment

Table 1 : Average MSE of each model at different cutoffs

Table 2 : Count of curves that causes model breakdown

Cutoff	Count	% Out of total		10%	20%	40%	80%
10%	425	9.73%	Under Estimate	266	272	406	543
20%	572	13.10%	Over Estimate	158	296	557	703
40%	986	22.58%	Neither	1	4	23	9
80%	1255	28.74%	Total	425	572	986	1255

Table 4 : Count of curves that causes model breakdown grouped by Dataset (OpenML ID)

10		20		40		80		
Dataset id	Count	Dataset id	Count	Dataset id	Count	Dataset id	Count	
1457	18	346	13	41157	19	346	17	
1515	10	41157	11	380	19	18	16	
446	10	1465	11	${\bf 1465}$	17	299	16	
1083	10	1083	11	55	15	1083	15	
188	8	1084	11	61	15	1465	15	

Table 5 : Count of curve that cause model breakdown grouped by Learner

	10%		20%		
Top 2	SVC_sigmoid		SVC_sigmoid	99	
10p 2	sklearn.discriminant_analysis.		${ m sklearn.discriminant_analysis.}$	54	
	QuadraticDiscriminantAnalysis	54	Quadratic Discriminant Analysis	54	
Bottom 2	sklearn.ensemble.RandomForestClassifier	9	sklearn.tree.DecisionTreeClassifier	17	
Dottom 2	$sklearn.linear_model.LogisticRegression$	9	sklearn.ensemble.RandomForestClassifier	15	
	40%		80%		
Top 2	SVC_sigmoid	104	SVC_sigmoid	114	
10p 2	sklearn.linear_model. PassiveAggressiveClassifier	71	$sklearn.linear_model.Perceptron$	101	
Bottom 2	sklearn.ensemble.RandomForestClassifier	40	SVC_poly	47	
	sklearn.naive_bayes.BernoulliNB	36	sklearn.ensemble.ExtraTreesClassifier	45	

Conclusion

- **Performance Evaluation**: Compared LC-PFN to baselines (last1) and **mmf4**) across different cutoff values.
- **Analysis of Model Shortcomings**: Identified instances of model breakdown due to overconfidence, increasing with higher

- Refine LC-PFN training with LCDB. Preliminary attempts in the repository 3 .
- Address failures caused by mmf4 and last1 in curve fitting.
- Refine the scaling approach to prevent model breakdowns.
- Explore different percentages of points required outside the Confidence Interval of LC-PFN.
- Determine confidence intervals for mmf4 and last1 and extend to other parametric models for better comparison

Figure 2 : Box plot of each model at 10% cutoff

Table 3 : Count of curves by over & under estimating tendencies of the model at different cutoffs

Future Directions