CNN-BASED COGNITIVE ACTIVITY RECOGNITION

Bob Brockbernd

Supervisors: Guohao Lan, Lingyu Du EEMCS, Delft University of Technology, The Netherlands.

What is Cognitive Activity Recognition?

Cognitive activity recognition is the **classification of cognitive behaviour** using human data. This research uses **eye-movement data** in particular. In other words: **Gaze-based activity recognition**

1. Preprocessing

3. Hyperparameter tuning

Hyperparameters: framelength, image resolution, line thickness, filter count, filter size, drop out rate, fully connected size, extra layers, enable gradient.

Tuning steps:

- 1. Defining search space with hyperband
- 2. Exploring search space with **bayesian optimization**
- 3. Finalizing hyperparameters

Why is CAR useful?

- Recognizing driver fatigue with eye-tracking, is used in modern cars to prevent accidents.[1]
- Providing context for virtual reality.
- Cognitive activity recognition provides insights for educational research.

What is the challenge of CAR?

• Current technologies require manual feature ex-

Fig 1: preprocessing pipeline

Fig 2: Drawing a gaze

2. Baseline CNN architectures

1D Convolution

Fig 5: Search space exploration pipeline

4. Validation

Validation is done with **k-fold crossvalidation** on the **accuracy** metric. The CNNs can be validated using **known subjects or unknown subjects**.

- traction.
- Different people have large **differences** in **eyemovement behaviour**. Which makes manual feature extraction difficult.

Convolutional neural networks can solve these challenges by **learning feature extraction**.

Research questions

Can a convolutional neural network classifier be used for gaze-based activity recognition?

- What CNN architecture is best suited for gazebased activity recognition?
- Which CNN hyperparameters perform best for gaze-based activity recognition?
- How do the found CNN performances compare to other machine learning techniques?

Fig 3: 1D convolutional neural network based on [2]

2D convolution

Results

Table 1: Best CNN per dataset validated with unknown subjects compared to other machine learning techniques.

Algorithm	Reading	Sedentary	Desktop
RF	0.67	0.65	0.58
SVM	0.75	0.52	0.60
k-NN	0.71	0.48	0.54
LSTM	0.31	0.67	0.32
CNN	0.67	0.69	0.40

Table 2: Best CNN per dataset validated with known subjects comparedto other machine learning techniques.

Algorithm	Reading	Sedentary	Desktop
RF	0.96	0.94	0.92
SVM	0.85	0.86	0.95
k-NN	0.91	0.77	0.84
LSTM	0.98	0.98	0.95
CNN	1.00	1.00	0.99

Method

Preprocessing data
Finding suitable CNN architectures
Tuning hyperparameters
Validation

Fig 4: The LeNet5 convolutional neural network has proven to be effective in recognizing patterns in black and white images. [3]

Conclusion

For known subjects, convolutional neural networks perform significantly better than current methods. However, further research is needed to improve performance for unknown subjects.

TUDelft

References

[1] P. Norloff, "Eye tracking technology is making new cars safer," Sep 2019. [Online]. Available: https://eyegaze.com/eye-tracking-technology-is-making-new-cars-safer/

[2] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, and J. Zhang, "Convolutional neural networks for human activity recognition using mobile sensors," in 6th international conference on mobile computing, applications and services. IEEE, 2014, pp. 197–205.

[3] Y. LeCun et al., "Lenet-5, convolutional neural networks," URL: http://yann. lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.