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1. INTRODUCTION

Figure 1: Overview of UTGen’s phases.

Figure 2: Study setup for running each of UTGen’s
phases in isolation, using the same test population as the

foundation.

Figure 3: Coverage difference between EvoSuite and each phase of UTGen:
Test Data, Understandability, Test Name, and full UTGen.

3. UTGEN ANALYSIS SETUP

2. RESEARCH QUESTIONS

4. UTGEN ANALYSIS RESULTS

8. CONCLUSIONS
RQ1: The Phase isolation study reveals that the Understandability phase, which

replaces the entire test body, causes the most significant difference in coverage.
From the Manual inspection, the biggest factor negatively impacting coverage is
the removal of method calls or tests altogether.

RQ2: The experiment showed mixed results, with source code addition having no
impact on several projects and reduced coverage in others compared to UTGen.
Although UTGenCov improved test understandability more frequently, it
resulted in an average of 0.74% lower branch coverage than UTGen.

6. UTGENCOV RESULTS
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Search-based software testing (SBST) tools, such as EvoSuite [1], use genetic
algorithms to generate test suites that can achieve adequate coverage [2].
The growing popularity of Large Language Models (LLMs) is becoming increasingly
evident, and researchers are actively pursuing techniques to automate test generation
with the help of LLMs [3; 4].
UTGen [5], a tool integrating LLMs with EvoSuite, produces more understandable tests
than EvoSuite; however, the generated tests suffer a coverage drop.
This research explores the ability of Large Language Models to improve the
understandability of generated unit tests without compromising coverage.

The key research goal is to identify the causes behind coverage shortages in LLM-guided
SBST compared to conventional SBST and, subsequently, address these shortfalls. This
overarching objective can be further subdivided into the following sub-questions:

EXPLORING TEST SUITE COVERAGE OF LARGE LANGUAGE MODEL–ENHANCED
UNIT TEST GENERATION
A Study on the Ability of Large Language Models to Improve the Understandability of Generated Unit Tests Without Compromising Coverage

Limitations
7. DISCUSSION

The research was constrained by a limited time frame and resource availability.
These constraints could impact the findings, potentially not providing a sufficiently
comprehensive overview.
The LLM is nondeterministic, meaning that experiment outputs may be slightly
skewed. However, nondeterminism is necessary because of the improper output
format that the LLM sometimes generates. 

Future Work
Future work should include experiments with a broader scope, that involve more
projects to strengthen results and uncover new insights.
An analysis of the impact on coverage using different LLMs, such as Code Llama 70b
or Codestral, should be considered. Larger LLMs could reduce hallucinations and
produce more understandable tests than Code Llama 7b Instruct.

Which of UTGen’s phases impact the test suite coverage?

How can the factors contributing to inferior coverage in UTGen be mitigated?

RQ1         

RQ2          

Figure 1 illustrates the phases that UTGen undergoes:
EvoSuite uses a Generic Algorithm to produce a test suite for a given project.
UTGen’s Test Data improvement phase (1 in Fig. 1) enhances test data, such as the
parameters used in method calls.
UTGen’s Understandability improvement phase (2 in Fig. 1) focuseson adding
descriptive comments and improving variable names.
UTGen’s Test Name improvement phase (3 in Fig. 1) focuses on giving a descriptive
name to each test.

The dataset used as a basis for our analysis is a subset of EvoSuite’s SF110 [6]. The subset
was chosen based on the results of the UTGen experiments. In particular, classes that
manifested a decrease in coverage in UTGen compared to EvoSuite were included in our
investigations.

We investigated the factors that negatively affect the coverage of the generated test suite
in UTGen via two studies: Phase isolation and Manual inspection.

For each class under test, we ran EvoSuite
once. We used the generated tests as a
basis in four independent runs of UTGen:
only Test Data, only Understandability, only
Test Name, and full UTGen.

B) Manual inspection
We manually compared the test suites
generated in the initial UTGen experiment
and classified them into several categories
based on the reasons believed to cause the
coverage drop.

A) Phase isolation

A) Phase isolation The Understandability
phase of UTGen has the
biggest negative impact,
with a 2.2% decrease in
branch coverage.
The Test Data phase has
a minor impact on
coverage, with a
decrease of 0.03% in
branch coverage.
The Test Name phase
does not impact the test
suite coverage.

Figure 4: Manual inspection results: The 47 tests, part of 11
projects identified to have a negative impact on coverage were

categorized into groups based on the cause of the coverage drop.

B) Manual inspection Test removed: 47% - EvoSuite
removes unstable/non-
compiling tests.
Method call removed: 25% -
tests missed method calls /
constructors after UTGen’s
improvements.
Test data changed: 17% -
parameter changes by UTGen
lead to uncovered corner cases.
Content greatly differs: 11% -
tests had significant changes in
test logic (e.g., different objects
were instantiated).

Figure 6: Branch coverage difference between UTGen’s
Understandability phase and UTGenCov compared to

EvoSuite for all projects in the experiment.

Table 1: Percentage of tests with no comments added
and rolled back to EvoSuite for each approach.

 Projects 12, 26, 68: Source code addition had no impact on tests or coverage.
Project 12: The test got rolled back in both approaches as it failed to compile.
Project 26: Identical test suites in UTGen and UTGenCov.
Project 68: All 17 tests concluded without added comments in both approaches.

Project 45:
Coverage increase in UTGen and UTGenCov tests compared to EvoSuite.
One line removed led to an extra edge case being covered. For this reason, it was
excluded from the average in Figure 6.

Project 19: 
UTGen coverage decreased by 1%, but for UTGenCov, it was the same as EvoSuite's.
UTGenCov had one extra test without added comments, which might have prevented
the coverage decrease seen in UTGen.

Projects 17 and 93: Source code addition resulted in lower coverage.
Project 93: UTGen had 61% of tests without comments, while UTGenCov had 17%.

Coverage impact estimation was based on the number of tests showing the behavior,
as a direct correlation with the effect on coverage is impossible.
The underlying cause remains uncertain. We hypothesize that all issues stem from
hallucinations within the LLM, potentially arising from insufficient contextual
information or the inherent constraints of the chosen LLM model.
Five inspected tests exhibited clear hallucination, with method calls not present in the
test case or the method under test. 

5. UTGENCOV APPROACH

Figure 5: Experiment setup for comparing UTGen’s
Understandability phase with the improved UTGenCov

approach, using the same test population as the foundation.

Based on the findings of RQ1, we constructed UTGenCov, an extension of UTGen:
It uses a grounding technique [7] to limit LLM hallucinations by providing more context.
Specifically, in the Understandability phase, we include, in the LLM prompt, the source
code of the methods used in the test to be improved.

To assess the efficacy of UTGenCov, we
set up an experiment where:

we compared the coverage of
EvoSuite to UTGen’s
Understandability phase run in
isolation and to the new UTGenCov
approach.
we disabled Test Data and Test Name
in UTGenCov for this experiment.


