Incorporating Multi-Omics for Alzheimer's Disease Predictions

Author: James Lee (<u>chunhonglee@tudelft.nl</u>) **Responsible Professor:** Marcel Reinders Supervisors: Timo Verlaan, Roy Largenoije, Gerard Bouland

Background:

- Alzheimer's Disease (AD) is a complex age-related neurogenerative brain disease, with currently no cure available
- The current leading hypothesis "Amyloid Cascade Hypothesis", states that the increase of the protein Amyloid-β activates the tau pathology
- Research has been done on single-omics to better understand this relationship •
- Development in multi-omics technologies raises the question, whether using multiple omics, could provide better classifications or gain ٠ a deeper insights in the mechanism of the disease

Research Question:

Does incorporating different omics, or a combination of multiple omics, improve Alzheimer's Disease predictions?

Dataset:

- Religious Orders Study and Memory and Aging Project (ROSMAP)
 - Proteomics (LC-SRM), the set of proteins;
 - Metabolomics (Metabolon HD4), the set of molecules because of metabolism;
 - Epigenetics (ChIP Seq), looks at how cells control gene activity without changing the DNA;
 - Gene Expression (RNA array), measures the levels of mRNA;
- Classify the "Final Consensus Cognitive Diagnosis (cogdx)" •
 - The overall cognitive diagnosis, neurologists gave after reviewing the clinical data from a patient, after death

Methodology:

- Models
 - Random Forest
 - **Block Forest**
 - *k*-Nearest Neighbors
 - Support Vector Machines (SVMs)
- Implementation Details
 - **10-Fold Stratified Cross-Validation**
 - Mean normalization
 - Oversampling using Synthetic Minority Over-Sampling Technique (SMOTE)
 - Feature selection by calculating the ANOVA F-value

Conclusion:

The use of multi-omics did not improve the predictions of Alzheimer's Disease compared to using single-omics

Results:

Random Forest

k-Nearest Neighbors

Support Vector Machines

