
Fixed-Point (Value) Recursion with
Algebraic Effects and Handlers in Haskell

Gijs van der Heide | G.vanderHeide-1@student.tudelft.nl

Delft University of Technology

Introduction
Algebraic effects and handlers are a new programming
technique

• Algebraic effects: abstractions as
interfaces (stateful computation, I/O
operations, exceptions, many more…)

• Handlers: modular implementations of
these interfaces

May make it easier to write and reason about complex
effectful programs

The Problem
How do algebraic effects and handlers interact with
recursive computations?

• Little research into the interaction
between effects and recursion – and
specifically value recursion [1]

• No research done when defined using
algebraic effects and handlers

Like Erkök [1], focus on fixed-point recursion

“How can effectful fixed-point (value) recursion be used in
combination with algebraic effects and handlers in
Haskell?”

Methodology
Usually no out-of-the-box support for algebraic effects and
handlers in mainstream programming languages (yet)

This project: work in Haskell with infrastructure from
Swierstra [2] and Bach Poulsen [3]

(1) Motivate the need for effectful, recursive functions
(2) Explore and explain algebraic effects and handlers

under fixed-point (value) recursion with example
programs

(3) Discuss and prove laws pertaining to value recursion

Background
Fixed-points
Used a lot in research – essentially just repeated application of
a function f

f(f(f(f(..))))
So defined as:

fix f = f (fix f)

A simple Haskell fixed-point combinator:

fix :: (a -> a) -> a

fix f = let x = f x in x

Algebraic Effects and Handlers in Haskell
Create syntax trees of computations using the free monad.

data Free f a = Pure a | Op (f (Free f a))

Ex.

getName :: Free (StrIn + StrOut + End) String

getName = do

 (name :: String) <- strIn

 strOut (“Hello, ” ++ name)

 return name

Handlers handle the effects, turning a free monad into an
actual value

un (handle handlerStrIn

 (handle handlerStrOut

 getName

))

Possible
effects in

computation

Return type

Value Computation

Continuation

Value Recursion
Recursion that only evaluates side-effects once!

Example (adapted from Erkök [1]):

chars :: [Char] -> Free (ChIn + End) [Char]

chars cs = do

 c <- chin

 return (c:cs)

Fixing with normal recursion semantics executes character
reading effect multiple times

Fixing with value recursion semantics executes character
reading effect only once – creates an infinite list of the input
character

Implementation & Analysis
Normal Recursion
Function has to be fixed before applying handlers. But:
behavior may differ depending on the handler applied later!

Functions do behave normally under normal fixed-point
recursion! Two possible signatures were considered:

The Either signature

data Either a b = Left a | Right b

f :: a -> Free f (Either a b)

efixEither :: Functor f =>

 (a -> Free f (Either a b))

 -> a

 -> Free f b

Left continues, Right terminates

The Regular Fix Signature

f :: (a -> Free f a) -> a -> Free f a

Can be fixed with regular fix!

Detailed the evaluation process to see how and to formalize
why these signatures work for normal recursion

choices :: Int -> Free (Choice + End)

 (Either Int Int)

choices k = do

 b <- choice

 if b then do

 return (Right k)

 else do

 return (Left (k + 1))

Essentially, the fix function is embedded into the effect
continuation by function composition

Op (Choose k) ---->

Op (Choose (\z -> (fold _fix Op) (k z)))

As soon as a handler is applied, a result is obtained which
is immediately passed to the fix function again, creating
recursion

Value Recursion
Much harder problem than normal recursion. How can
effects be forced to only be executed once?

For example, in the chars function discussed earlier
(desugared):

chars = \cs ->

 Op (ChIn (\c -> Pure (c:cs)))

How to get around executing ChIn multiple times?
The continuation on its own cannot be fixed!

No solution found! We explored some possibilities:

Dummy Handlers
(handleAll normalHandlers f x) >>=
 (\res -> handleAll dummyHandlers (fix f) res)

Problem: requires the continuation to be freely available,
cannot work for all effects

fixIO-inspired Stateful Handling
Not explored in detail. Storing the result of the function in a
mutable variable may generate recursion. Unclear whether
this can be adapted for the free monad, and whether it is
general enough.

Conclusion
Recursion is very important and used often in functional
programming – we motivated the need for more research
into its interaction with algebraic effects and handlers.

Algebraic effects behave predictably under normal fixed-
point recursion. Several ways of doing this were provided
and analyzed to see how and why they work.

Value recursion has been shown to be a much harder
problem! Not obvious how to implement value recursion
semantics, and this question unfortunately remains
unanswered!

It may be possible to derive an operator with value
recursion semantics from the provided laws, adapted from
Erkök [1]

Value recursion with algebraic effects is an interesting open
problem – we hope this lays the groundwork for future
research into this topic!

References
[1] L. Erkök, “Value Recursion in Monadic Computations,”
AAI3063791, Ph.D. dissertation, 2002, ISBN: 0493822941.

[2] W. Swierstra, “Data types à la carte,” Journal of
Functional Programming, vol. 18, no. 4, pp. 423-436, 2008.
DOI: 10.1017/S0956796808006758.

[3] C. Bach Poulsen. “Algebraic Effects and Handlers in
Haskell.” (2023), [Online]. Available:
http://casperbp.net/posts/2023-07-algebraic-effects/.

This is a poster for the research paper “Fixed-Point (Value) Recursion with Algebraic Effects and Handlers in Haskell” (2024) by Gijs van der Heide,
submitted as a BSc thesis in Computer Science & Engineering at Delft University of Technology
A digital version of this thesis is available at https://repository.tudelft.nl

Formal Analysis of Value Recursion
May be possible to derive a value recursion operator from
laws. Laws adapted from Erkök [1]

Especially left shrinking seems promising – general
description of how to extract effects out of a fix:

h :: α → β → Free ϕ α
vfix (λx. Op (E (λy. h x y))) ≡ Op (E (λy. (vfix (λx. h x y))))

Lifting out an effect ensures that it is only executed once!

Even if this can be done in general, what about effects that
cannot be lifted out? For example, due to the use of
recursive bindings? End up with the same problem!

	Dia 1

