
Feature-Driven SAT Instance Generation
Benchmarking Model Counting Solvers Using Horn-Clause Variations

Author: Vuk Jurišić1

Responsible Professor: Dr. Anna L.D. Latour1

1Delft University of Technology

Background

CNF Formula:

F (X) := (x ∨ y) ∧ (y ∨ ¬z)

Horn Clause Definition:

A clause with at most one positive literal

is called a Horn Clause.

C1 := (¬x ∨ ¬y) (Horn Clause)

C2 := (x ∨ ¬y) (Horn Clause)

C3 := (x ∨ y) (Not Horn Clause)

Truth Table for Model Counting:

x y z Formula

0 0 0 UNSAT

0 0 1 UNSAT

0 1 0 SAT

0 1 1 SAT

1 0 0 SAT

1 0 1 UNSAT

1 1 0 SAT

1 1 1 SAT

Model Count 5

Motivation

Solver performance depends on input instance characteristics:
”Harder” problems challenge solvers and can reveal bugs, weaknesses and strenghts.

Feedback can be extracted from solving instances that enduce such behaviour.

We propose generating #SAT instances by varying horn-clauses-fractions feature:
Horn clauses have been researched before in both SAT and #SAT, however not in generation.

Existing generators do not explore full feature space of horn clauses, covering only 40% of it.

Figure 1. Fraction of Horn clauses in instances produced by existing generators.

Research Question

How can we design a #SAT instance generator that systematically varies
the fraction of Horn clauses while keeping values of other features stable?

How can analysing solver performance on instances produced by our
generator reveal solver strengths, weaknesses, and opportunities for
improvement?

Methodology

Selected 8 additional features [1]:
To benchmark horn-clause-fractions independently, instances should be similar in other properties.

Designed a metric:
We used NCV to measure how well feature values vary between their theoretical amplitudes.

Developed a custom generator:
Takes in an instance and outputs N instances with evenly distributed horn clause fractions (0% to 100%).

Utilizes concepts of post-processing by flipping literal polarity and solution fitting [2].

Benchmarked state-of-the-art solvers:
Created large instance sets with different clause-to-variable ratios.

NCV = σ

µ
· Observed_Max − Observed_Min

Theoretical_Max − Theoretical_Min

Figure 2. Normalized Coefficient of Variation (NCV) formula.

Solve time = f (Model count)?

Results

Feature Name NCVValue

CNFuzzDD Competition Horn

horn-clauses-fraction 0.06118 0.35889 0.57053

BINARY+ 0.23235 0.68741 0.00001

VCG-VAR-mean 0.13415 0.22757 0.00001

VCG-CLAUSE-mean 0.13410 0.23705 0.00001

cluster-coeff-mean 0.08751 1.50337 0.01160

vars-clauses-ratio 0.04495 0.50339 0.00064

reducedClauses 0.00729 0.29252 0.00009

reducedVars 0.00677 0.41309 0.00025

TRINARY+ 0.06654 0.36689 0.00000

Table 1. NCV values for selected features instances generated with CNFuzzDD generator, Track 1 of 2024 MC

Competition and our Horn Generator.

Figure 3. Solver performance on instances with 400 variables and clause counts: 90 and 110.

Applying the transformation function
4√
model count, we observe a Pearson correlation

coefficient of 0.862 and a Spearman rank correlation coefficient of 0.972 between model

count and solving time.

Figure 4. gpmc solver runtime and model count for instances with 100 clauses, with transformation

function f (x) = 4√x applied to model count.

Conclusion

Implemented a new generator exploring the full feature space of Horn-clause fractions.

Solvers were particularly challenged by instances with extreme Horn-clause fractions.

Comparison of solvers showed:
ganak took 4 times more time on instances with standard Horn-clause fractions, comparing to d4 and gpmc.
d4 was slower then other 2 when solving on problems with extreme Horn-clause fractions.

A strong correlation is suspected between model count and solve time for all solvers.

FutureWork

Improve the generator by performing informed instead of random modifications.

Conduct experiments with clauses of varying arities for greater versatility.

Further investigate the relationship between model count and solve time across diverse

instance sets.

Establish connections between solver algorithms and observed performance results.

References

[1] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham, “Understanding

Random SAT: Beyond the Clauses-to-Variables Ratio,” in Principles and Practice of Constraint

Programming – CP 2004, M. Wallace, Ed. Berlin, Heidelberg: Springer, 2004, pp. 438–452.

[2] G. Escamocher and B. O’Sullivan, “Generation and Prediction of Difficult Model Counting

Instances,” Dec. 2022, arXiv:2212.02893. [Online]. Available:

http://arxiv.org/abs/2212.02893

V.Jurisic@student.tudelft.nl

http://arxiv.org/abs/2212.02893
mailto:V.Jurisic@student.tudelft.nl

