

Background

CNF Formula: $F(X) := (x \lor y) \land (y \lor \neg z)$

Horn Clause Definition:

A clause with at most one positive literal is called a Horn Clause.

(Horn Clause) $C_1 := (\neg x \lor \neg y)$ (Horn Clause) $C_2 := (x \vee \neg y)$ (Not Horn Clause) $C_3 := (x \lor y)$

Truth Table for Model Counting:								
	x	y	z	Formula				
	0	0	0	UNSAT				
	0	0	1	UNSAT				
	0	1	0	SAT				
	0	1	1	SAT				
	1	0	0	SAT				
	1	0	1	UNSAT				
	1	1	0	SAT				
	1	1	1	SAT				
	Мос	del Co	bunt	5				

Motivation

Solver performance depends on input instance characteristics:

- "Harder" problems challenge solvers and can reveal bugs, weaknesses and strenghts.
- Feedback can be extracted from solving instances that enduce such behaviour.
- We propose generating #SAT instances by varying horn-clauses-fractions feature:
- Horn clauses have been researched before in both SAT and #SAT, however not in generation.

Figure 1. Fraction of Horn clauses in instances produced by existing generators.

Research Question

- How can we design a #SAT instance generator that systematically varies the fraction of Horn clauses while keeping values of other features stable?
- How can analysing solver performance on instances produced by our generator reveal solver strengths, weaknesses, and opportunities for improvement?

Feature-Driven SAT Instance Generation

Benchmarking Model Counting Solvers Using Horn-Clause Variations

Author: Vuk Jurišić¹ Responsible Professor: Dr. Anna L.D. Latour¹

¹Delft University of Technology

Methodology

- Selected 8 additional features [1]:
- To benchmark horn-clause-fractions independently, instances should be similar in other properties. Designed a metric:
- We used NCV to measure how well feature values vary between their theoretical amplitudes. Developed a custom generator:
- Takes in an instance and outputs N instances with evenly distributed horn clause fractions (0% to 100%). • Utilizes concepts of post-processing by flipping literal polarity and solution fitting [2].
- Benchmarked state-of-the-art solvers:
- Created large instance sets with different clause-to-variable ratios.

Observed_Max – Observed_Min NCV = - μ Theoretical_Max – Theoretical_Min

Figure 2. Normalized Coefficient of Variation (NCV) formula.

Solve time = f(Model count)?

Results

Feature Name	NCV Value			
	CNFuzzDD	Competition	Horn	
horn-clauses-fraction	0.06118	0.35889	0.57053	
BINARY+	0.23235	0.68741	0.00001	
VCG-VAR-mean	0.13415	0.22757	0.00001	
VCG-CLAUSE-mean	0.13410	0.23705	0.00001	
cluster-coeff-mean	0.08751	1.50337	0.01160	
vars-clauses-ratio	0.04495	0.50339	0.00064	
reducedClauses	0.00729	0.29252	0.00009	
reducedVars	0.00677	0.41309	0.00025	
TRINARY+	0.06654	0.36689	0.00000	

Table 1. NCV values for selected features instances generated with CNFuzzDD generator, Track 1 of 2024 MC Competition and our Horn Generator.

Figure 3. Solver performance on instances with 400 variables and clause counts: 90 and 110.

count and solving time.

function $f(x) = \sqrt[4]{x}$ applied to model count.

- Comparison of solvers showed:
- A strong correlation is suspected between model count and solve time for all solvers.
- Conduct experiments with clauses of varying arities for greater versatility.
- Further investigate the relationship between model count and solve time across diverse instance sets.

- Instances," Dec. 2022, arXiv:2212.02893. [Online]. Available: http://arxiv.org/abs/2212.02893

• Applying the transformation function $\sqrt[4]{model count}$, we observe a Pearson correlation coefficient of 0.862 and a Spearman rank correlation coefficient of 0.972 between model

Horn Clauses Fraction

Figure 4. gpmc solver runtime and model count for instances with 100 clauses, with transformation

Conclusion

• Implemented a new generator exploring the full feature space of Horn-clause fractions. • Solvers were particularly challenged by instances with extreme Horn-clause fractions.

ganak took 4 times more time on instances with standard Horn-clause fractions, comparing to **d4** and **gpmc**. • d4 was slower then other 2 when solving on problems with extreme Horn-clause fractions.

Future Work

Improve the generator by performing informed instead of random modifications.

• Establish connections between solver algorithms and observed performance results.

References

[1] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar, and Y. Shoham, "Understanding" Random SAT: Beyond the Clauses-to-Variables Ratio," in Principles and Practice of Constraint Programming – CP 2004, M. Wallace, Ed. Berlin, Heidelberg: Springer, 2004, pp. 438–452.

[2] G. Escamocher and B. O'Sullivan, "Generation and Prediction of Difficult Model Counting