
Continual learning suffers from two main problems:
loss of plasticity and catastrophic forgetting which
are inherently linked through the stability-plasticity
trade-off. Dohare et al. [1] proposed an efficient way
to mitigate loss of plasticity in neural networks
(NNs) by introducing an algorithm called Continual
Backpropagation (CBP). However, no
comprehensive research has been conducted to
evaluate the extent of CBP’s susceptibility to the
second part of the trade-off: catastrophic forgetting.

Evaluated forgetting for two different scenarios:
Initial exposure recall.  Evaluates how quickly model
forgets information it encountered for the very first time.
Recurrent task recall. Evaluates how well model maintains
knowledge about previously learned and then reintroduced
information.

Compared forgetting of CBP to four baseline algorithms:
1.Standard backpropagation.
2.Shrink and Perturb [2].
3.L2 regularization.
4.Adam optimizer [3].

Analyzed the internal network dynamics during training, in
particular weight and activation drift.

Examined the influence of CBP’s hyperparameters on the
stability–plasticity trade-off, including learning rate,
replacement rate (ρ), decay rate (η) , and maturity threshold.

Evaluated three adjustments to CBP, expected to improve the
stability-plasticity trade-off: 

1.Noise Injection [4].  Neurons are reset by shrinking the
weights and adding noise, instead of full reinitialization. 

2.Layer-specific replacement [5]. Neurons are reset only in the
first hidden layer of the network.

3.Partial neuron reinitialization.  When resetting a neuron,
only fraction of incoming/outgoing weights is reinitialized.

What is the effect of Continual Backpropagation
algorithm on catastrophic forgetting?

1.How much is CBP prone to catastrophic
forgetting compared to other algorithms?

2.What is the trade-off between loss of plasticity
and catastrophic forgetting with regard to
different hyperparameters of CBP?

3.Do NNs trained with CBP demonstrate
improved retention and adaptation to
information introduced multiple times?

4.What internal dynamics do NNs display when
trained using CBP? 

5.Can CBP be improved to reduce forgetting?
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CBP showed higher forgetting than all the baseline methods.
Replacement rate, decay rate, and learning rate significantly
affected the stability–plasticity trade-off.
Three evaluated CBP variants reduced forgetting without
significantly compromising plasticity.
Activation drift strongly correlated with forgetting.
Decay rate experiments suggest utility estimation in CBP can
be improved to better preserve past task-relevant features.

Online Permuted MNIST (OPMNIST). MNIST is a
publicly available dataset of handwritten digit
images. CL setting is simulated by training a model
on a sequence of tasks, where each task corresponds
to classifying the MNIST dataset with a new, task-
specific pixel permutation applied to all the images.
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