IMPROVING ANONYMITY ON THE LIGHTNING NETWORK TUDelft **Simulating Multiple Path Segment Routing**

Background

- Lightning Network (LN) is a second-layer solution for Bitcoin
- Promises increased scalability and improved privacy
- However, a recent study showed LN routing is weak to anonymity-compromising attacks ^[1]
- The current routing protocol is partially deterministic, • allowing attackers to determine the sender and the recipient of a transaction

LN needs a more sophisticated routing protocol!

2

Research question

How can we simulate the usage of a new Lightning routing protocol using multiple path segments, and what are the anonymity benefits and efficiency costs?

Contact info: Joran Heemskerk (i.s.heemskerk@student.tudelft.nl) Supervisors: Stephanie Roos (s.roos@tudelft.nl) Satwik Prabhu Kumble (s.prabhu@tudelft.nl)

3 Method Construct metrics to evaluate the performance of routing protocols Design modified LN protocol using path segment routing Design counterattack for modified routing protocol Simulate LN using simulation framework ^[2] and estimate performance of the proposed protocol Design (4) Destination Novel routing protocol, inspired by the Next-Generation Internet's 'Dovetail Protocol'^[3] Split path generation in halves that connect on a 'dovetail' node Dovetail Generate full path by appending Source the two separate paths Figure 1: Visualising multiple path segment routing .

- Counterattack by splitting attack into 3 types:
- Path 1 attack: find sender and dovetail

.

- Path 2 attack: find dovetail and recipient
- Center attack: find sender and recipient

[1] S. P., Kumble, D. Epema and S. Roos. How lightning's routing diminishes its anonymity. 2021 [2] https://github.com/jsheemskerk/Attacking-Lightning-s-anonvmitv [3] Jody Sankey and Matthew Wright. Dovetail: Stronger anonymity in next-generation internet routing, 2014

5				Resul
	Barabasi-Albert		Erdos-Renyi	
	Old	New	Old	New
Success	92.51%	83.12%	82.43%	70.14%
AVGfee	1.08	2.33	2.62	4.63
AVGhops	3.40	5.74	5.62	9.01

Table 1: Anonymity metrics for Barabasi-Albert and Erdos-Renvi graphs

Barabasi-Albert	Old	Path 1	Center	Path 2	New
Transactions attacked	85.01%	-	-	-	92.0
Number of attacks	1313	1000	177	851	2028
Correct pair present	98.02%	99.2%	95.48%	99.18%	98.8
Avg number of pairs	24.04	73.25	368.32	24.59	78.5
Avg number of senders	20.63	17.84	44.01	21.51	21.6
Avg number of recipients	1.81	17.94	8.19	1.63	10.2
Singular sender	13.02%	10.8%	0.0%	0.0%	5.32
Singular recipient	63.21%	4.3%	15.25%	67.92%	31.9

Table 2: Cost efficiency metrics for Barabasi-Albert graph

Erdos-Renyi	Old	Path 1	Center	Path 2	New
Transactions attacked	77.03%	-	-	-	82.98
Number of attacks	1967	1263	200	1159	2622
Correct pair present	73.51%	82.66%	64.5%	81.88%	80.939
Avg number of pairs	23.23	135.05	46.67	25.74	79.99
Avg number of senders	18.63	14.83	21.95	21.23	18.20
Avg number of recipients	1.18	15.03	1.725	1.24	7.92
Singular sender	1.98%	3.17%	0.0%	0.17%	1.60%
Singular recipient	49.26%	0.95%	21.0%	57.03%	27.26

Table 3: Cost efficiency metrics for Erdos-Renyi graph

6

onnectivity of Dovetail node Figure 3: Effect of Dovetail node connectivity

սև հաևու

Figure 2: Effect of varying graph density

Conclusions & Further research

S

Hops Old Pairs New

Pairs Of

Anonymity improvement: source/destination pairs amount tripled

- Efficiency cost: doubling of average fee + 60% increase in hop count
- Further research: investigate semi-source routing & dovetail node choice heuristic