Testing the Performance of Automated
Documentation Generation with Included
Inline Comments

AUTHOR

Balys Morkiinas

SUPERVISORS

Annibale Panichella

Leonhard Applis

How do comments influence the performance of the code2seq [1] model?

1 MOTIVATION

e Documentation reduces the time needed to understand and maintain

code, lowers the chance of code detects [2].

e But documentation takes time and resources to produce and maintain.

e Automatic Documentation Generation methods exist but still need
improvement.

e Maybe they can be improved with inline comments?

2 BACKGROUND

e Code2seq - sequence to sequence model.

e |t uses attention to select relevant parts of the input.

e Performs method name generation, code captioning, and code
documentation.

3 HYPOTHESIS

o6

Inline source code comments

increase the performance
and accuracy of machine
learning models for Automatic

Documentation Generation

REFERENCES

[1] U. Alon, S. Brody, O. Levy, and E. Yahav, “Code2seq: Generating sequences from structured representations of
code,” in International Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forumid=HIgKYo0%tX.

[2] N. Khamis, R. Witte, and J. Rilling, “Automatic quality assessment of source code comments: Thejavadocminer,”
in International Conference on Application of Natural Language to Information Systems, Springer, 2010, pp. 68-79

4 METHODOLOGY

</>

Code with
comments

=

-_—
-

—_—

o

Preprocessing Training Fvaluating

</>

Code Figure 1: Pipeline for comparing performance.

S COMMENT INCLUSION

1~ int fooBar() {
2 // Sum two numbers

3 return 2 + 3;
4}

@er {MethodDecla@

body (BlockStmt) type (IntType)

@ent {Retum@
@ssion (BinaryExpr)
operator='PLUS'

Figure 2: Comments in an AST.

identifier="fooBar"

e Comment filtering, stop word remova

e Comments are encoded into Abstract Syntax Trees (AST)

e AST paths are used for training the model

6 RESULTS

BLEU Precision Recall F1 Time
NOCO 6.22 0.428 0.387 0.406 11h
ICOS 5.97 0.437 0.370 0.400 Sh
ICO 6.28 0.450 0.391 0.418 12h

Figure 3: Evaluation results for no comment, inline with stop words, and

inline processed models.

Original Docstring

ICO Docstring

NOCO Docstring

buffer when possible

this method 1is

called when the
buffer is read

reads up to code len
bytes from stream

gets the children of
this directory

gets the list of
children of the
current project

returns the list of
all children from
the directory

returns a host
specifier built
from the provided
specifier

returns the name of
the host

create a host from a
string

returns the
innermost cause
of code throwable

returns the root
cause of the given
throwable

cause the cause of
the given throwable

Figure 4. Generated comment examples.

7 CONCLUSION

e Slight increase in performance for ICO model, given stop

word removal (0.9% increase in BLEU score).

e More sophisticated filtering techniques.

e Comment scope detection.



