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How do comments influence the performance of the code2seq [1] model?

1 MOTIVATION

e Documentation reduces the time needed to understand and maintain

code, lowers the chance of code detects [2].

e But documentation takes time and resources to produce and maintain.

e Automatic Documentation Generation methods exist but still need
improvement.

e Maybe they can be improved with inline comments?

2 BACKGROUND

e Code2seq - sequence to sequence model.

e |t uses attention to select relevant parts of the input.

e Performs method name generation, code captioning, and code
documentation.

3 HYPOTHESIS

o6

Inline source code comments

increase the performance
and accuracy of machine
learning models for Automatic

Documentation Generation

REFERENCES

[1] U. Alon, S. Brody, O. Levy, and E. Yahav, “Code2seq: Generating sequences from structured representations of
code,” in International Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forumid=HIgKYo0%tX.

[2] N. Khamis, R. Witte, and J. Rilling, “Automatic quality assessment of source code comments: Thejavadocminer,”
in International Conference on Application of Natural Language to Information Systems, Springer, 2010, pp. 68-79

4 METHODOLOGY
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Code Figure 1: Pipeline for comparing performance.

S COMMENT INCLUSION

1~ int fooBar() {
2 // Sum two numbers

3 return 2 + 3;
4}

@er {MethodDecla@

body (BlockStmt) type (IntType)

@ent {Retum@
@ssion (BinaryExpr)
operator='PLUS'

Figure 2: Comments in an AST.

identifier="fooBar"

e Comment filtering, stop word remova

e Comments are encoded into Abstract Syntax Trees (AST)

e AST paths are used for training the model

6 RESULTS

BLEU Precision Recall F1 Time
NOCO 6.22 0.428 0.387 0.406 11h
ICOS 5.97 0.437 0.370 0.400 Sh
ICO 6.28 0.450 0.391 0.418 12h

Figure 3: Evaluation results for no comment, inline with stop words, and

inline processed models.
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Figure 4. Generated comment examples.

7 CONCLUSION

e Slight increase in performance for ICO model, given stop

word removal (0.9% increase in BLEU score).

e More sophisticated filtering techniques.

e Comment scope detection.



