Practical Verification of the Reader Monad

1. Background Information —

Haskell is a pure functional language.

Agda is a dependently typed language and proof
assistant.

Agda2hs is a tool that provides verified translation
from Agda to Haskell.

Reader is a monad that is used to model a global
state.

ReaderT is a monad transformer that can be used
to combine Reader with other monads.

circleArea :: ReaderT Double IO ()
circleArea = do
r <- lift $ getLine
pi <- ask
1ift $ putStrLn (show (pi * (read r) * (read r)))

2. Research Questions Q

Can agda2hs be used to produce verified
implementations of Reader and ReaderT?

* Can we implement Reader and ReaderT in Agda
using the language subset defined by agda2hs?

What are the properties that need to be satisfied
by Reader and ReaderT and how do we prove
these properties?

Does agda2hs provide correct and useful
translation of Reader and ReaderT to Haskell?

Contact: A.Harsani@student.tudelft.nl

3. Implementation Q

* Reader and ReaderT are defined as record types:

record Reader (r a : Set) : Set where
constructor MkReader
field

readerComputation : (r - a)

record ReaderT (r : Set) (m : Set -> Set) (a : Set) : Set where
constructor MkReaderT
field

readerTComputation : (r - m a)

¢ We also define functions ask, asks, local and
runReader.

* MonadTrans type class:

record MonadTrans (t : (Set - Set) - Set - Set) {{ @ iT : ¥ {m}
-> {{Monad m}} -> Monad (t m)}} : Set: where
field
lift : {{Monad m}} -> {@ a : Set} - ma->tma

v

4. Verification
* Functor, Applicative and Monad laws
* MonadTrans laws

* To verify these laws we create instance of the
verified type class with proof functions.

record VerifiedFunctor (f : Set - Set) {{@® iF : Functor f}} : Set: where
field
@ f-id-law : {a : Set} (x : f a) » fmap id x = x
@0 f-composition-law : {A B C : Set} (9 : B-C) - (h: A~ B)
- (x : fA) - fmap (g ¢ h) x = (fmap g o fmap h) x

Supervisors Contact:

By Alex Harsani
Under supervision of Jesper Cockx & Lucas Escot

]
TUDelft

.l

* Verified implementation of Reader and ReaderT

5. Results

was successfully produced by agda2hs.

record Reader (r a : Set) : Set where
constructor MkReader
field

readerComputation : (r - a)

data Reader r a = MkReader{readerComputation :: r -> a}

* Complete implementation with proofs, as well as
the demo can be found at:

https://github.com/AlexHarsani/monad-verification/

releases/tag/paper

6. Limitations 8

* newtype - agda2hs cannot translate newtype
definitions

* Quantified constraint - translating to Haskell

7. Conclusions and Future Work
* Reader and ReaderT were successfully
implemented and verified.

* Future Work - MonadReader class, Identity monad

G.H.Cockx@tudelft.nl, L.F.B.Escot@tudelft.nl


mailto:A.Harsani@student.tudelft.nl
mailto:J.G.H.Cockx@tudelft.nl
mailto:L.F.B.Escot@tudelft.nl
https://github.com/AlexHarsani/monad-verification/releases/tag/paper
https://github.com/AlexHarsani/monad-verification/releases/tag/paper

