
PESA-II: Divides search space into 'hyperboxes'. Biased
towards solutions from less dense hyperboxes in order to
obtain a diverse Pareto frontier. Selection from Pareto Front.

Apoorva Abhishek - A.Abhishek@student.tudelft.nl

PARETO ENVELOPE-BASED SEARCH ALGORITHM-II (PESA-II) FOR AUTOMATED TESTING OF JAVASCRIPT PROGRAMS

1) Background

2) Our Research

1) Does DynaPESA-II (PESA-II augmented with
DynaMOSA features) provide a significant
improvement over PESA-II?
2) How does DynaPESA-II perform in generating test
cases for JavaScript programs compared to
DynaMOSA on branch coverage?

3) Approach

References
[1] Dimitri Stallenberg, Mitchell Olsthoorn, and Annibale Panichella.
“Guess What: Test Case Generation for Javascript with
Unsupervised Probabilistic Type Inference” 2022, pp. 67–82.
[2] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo
Tonella. “Automated Test Case Generation as a Many-Objective
Optimisation Problem with Dynamic Selection of the Targets”. In:
IEEE Transactions on Software Engineering 44.2 (2018), pp. 122–
158.
[3] David W. Corne et al. “PESA-II: Region-Based Selection in
Evolutionary Multiobjective Optimization”. InProceedings of the 3rd
Annual Conference on Genetic and Evolutionary Computation.
GECCO’01. San Francisco, California: Morgan Kaufmann Publishers
Inc., 2001, pp. 283–290.

Problem
Software contains bugs. Software
testing aims to fix these bugs but can
be very time consuming and
 expensive.

 Automation
Search Based Test Case Generation-
Using Evolutionary Algorithms to obtain
a test suite.

Current State of the Art
Syntest-Javascript [1] for JavaScript
test case generation which contains
an implementation of DynaMOSA [2]-
the best performing Algorithm.

4) Results

5) Conclusion

DynaPESA-II outperforms PESA-II.
DynaMOSA remains the best performing

algorithm with slightly better performance
than DynaPESA-IIDynaMOSA is based on NSGA-II and modified for

test case generation. We will use the Pareto
Envelope-Based Search Algorithm (PESA-II) [3] as
the base algorithm and augment it with
DynaMOSA features to potentially achieve better
performance than DynaMOSA.

Research Questions:

Does not scale when using many (> 4) objectives.

PESA-II Adaptation:

DynaPESA-II features:

Iterate over
 highlighted
boxes.
Randomly
select 1
solution from
each box.

1) Selection Based on
Preference Criterion

2) Dynamic
Selection of
Optimization

Targets

3) Addition of the archive.

The algorithms were compared using a benchmark
consisting of a diverse set of JavaScript classes. It
included 27 classes from 4 different projects.

PESA-II: 44.7%
DynaMOSA: 57.4%
DynaPESA-II: 55.8%

The average branch coverage from all the classes
are:

