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PARETO ENVELOPE-BASED SEARCH ALGORITHM-II (PESA-II) FOR AUTOMATED TESTING OF JAVASCRIPT PROGRAMS

1) Background

2) Our Research

1) Does DynaPESA-II (PESA-II augmented with
DynaMOSA features)  provide a significant
improvement over PESA-II? 
2) How does DynaPESA-II perform in generating test
cases for JavaScript programs compared to
DynaMOSA on branch coverage?

3) Approach
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Problem
Software contains bugs. Software
testing aims to fix these bugs but can
be very time consuming and 
 expensive.

 Automation
Search Based Test Case Generation-
Using Evolutionary Algorithms to obtain
a test suite.

Current State of the Art
Syntest-Javascript [1] for JavaScript
test case generation which contains
an implementation of DynaMOSA [2]-
the best performing Algorithm.

4) Results 

5) Conclusion 

DynaPESA-II outperforms PESA-II. 
DynaMOSA remains the best performing

algorithm with slightly better performance
than DynaPESA-IIDynaMOSA is based on NSGA-II and modified for

test case generation. We will use the Pareto
Envelope-Based Search Algorithm (PESA-II) [3] as
the base algorithm and augment it with
DynaMOSA features to potentially achieve better
performance than DynaMOSA. 

Research Questions:

Does not scale when using many (> 4) objectives.

PESA-II Adaptation:

DynaPESA-II features:

Iterate over 
 highlighted
boxes.
Randomly
select 1
solution from
each box.

1) Selection Based on
Preference Criterion

2) Dynamic
Selection of
Optimization

Targets 

3) Addition of the archive.

The algorithms were compared using a benchmark
consisting of a diverse set of JavaScript classes. It
included 27 classes from 4 different projects. 

PESA-II: 44.7%
DynaMOSA: 57.4%
DynaPESA-II: 55.8% 

The average branch coverage from all the classes
are:


