
Evaluating the egg Equality Saturation Superoptimizer
Luca Hagemans (l.c.hagemans@student.tudelft.nl)

Supervisors: Dennis Sprokholt & Soham Chakraborty

1. Background

Superoptimization is the idea of optimizing a given input program into

the most optimal program possible that has the same functionality [1].

Equality Saturation is a superoptimization technique that applies rewrite

rules to an e-graph until saturation or timeout, then extracts the optimal

program [2].

Rewrite Rule: Dictates a left hand side and a right hand side that achieve

the same behaviour such as a · 2 =⇒ a << 1.
Implied Rewrite Rule: A rewrite rule that can be applied indirectly via

multiple other rewrite rules.

E-graph: An e-graph is a graph structure existing of e-classes and e-

nodes, where e-classes contain one or multiple e-nodes. E-nodes are

pieces of code with e-classes as children. Every e-node in an e-class

achieves the same result. Figure 1 shows the saturation of an e-graph

for the input program of (a · 2)/2.
Egg is an open source1 e-graph implementation in Rust, capable of equal-

ity saturation. Introduced in [3], it iterates on equality saturation (eq-sat)

proposed in [2]. Egg is the basis for extensions such as Herbie, Diospyros

and Tensat.

/

a

*

2

/

a

*

2 1

<<

/

a

*

2 1

<<

*

/

/

a

*

2 1

<<

*

/

Figure 1. Verbatim taken from [3] An e-graph of the program (a · 2)/2

1 https://egraphs-good.github.io/

2. Research question

Is the egg superoptimizer quicker when provided with more rewrite

rules?

We answered the research question using the following sub-questions:

1. Can the improvement claims from [3] be reproduced?

2. Does egg speed up or slow down when provided with extra unused

rewrite rules?

3. Does egg speed up or slow down when provided with inferable

rewrite rules?

3. Method

First sub-question was answered by the research artefact of [3]. It

produces plots and values to compare to the original.

Second sub-question was answered by writing small tests and

providing either all or selected rewrite rules.

Third sub-question was answered by writing small tests and providing

either selected and implied or only selected rewrite rules.

The research artefact was run 10 times. Tests for sub-questions 2 and 3

were run 5 times for both rewrite rule sets, each run created 200 data-

points.

4. Reproduced results

Reproducing the results gave values and graphs to compare with those

given in [3]. The reproduced graphs are given in Figure 2, the reproduced

values are:

1. The correlation coefficient (rs) of amount of times the e-graph is

restored with the amount of time taken, the claimed value for rs is

.98. Our 95% confidence interval for rs is (.976, .982).

2. The speedup restoring the e-graph of egg over original eq-sat, the

claimed value for this speedup is 88×. Our 95% confidence interval

for this speedup is (87.7, 96.7).

3. The overall speedup of egg over original eq-sat, the claimed overall

speedup is 21×. Our 95% confidence interval for the overall speedup

is (16.4, 17.4).

10 7 10 5 10 3 10 1 101 103 105

Rebuilding every merge

10 7

10 5

10 3

10 1

101

103

105

Re
bu

ild
in

g 
on

ce
 p

er
 it

er
at

io
n

Congruence time (sec) - log scale

(a) Time spent repairing

e-graph, points below

x = y mean egg is faster

than original eq-sat

100 101 102 103 104 105 106

Rewrites applied so far

0.3×

1×

3×

10×

30×

100×

300×

Sp
ee

du
p 

(lo
g 

sc
al

e)

(b) The speedup of egg over

original eq-sat for different

amount of rewrite rules

applied with trace

10 1 101 103 105 107

Number of calls to repair

10 7

10 5

10 3

10 1

101

103

105

Ti
m

e 
sp

en
t i

n 
co

ng
ru

en
ce

 (s
ec

)

Rebuilding every merge
Rebuilding once per iteration

(c) Correlation between the

amount of times the

e-graph is restored and

time spent in restoring the

e-graph

Figure 2. Reproduced graphs from the first run, showing similar results to those in [3]

5. Results of testing egg

A 95% confidence interval was calculated for each test with 200 data-

points. A minimum speedup/maximum slowdown was calculated using

the high and low bounds of the confidence interval, which was averaged

over 5 runs.

When removing unused rewrite rules, two different tests resulted in a

44% and 3.84% minimum average speedup.

When adding an implied rewrite rule, two test cases resulted in a

14.4% and 10.0% minimum average speedup, another test case

resulted in a 11.0% maximum average slowdown.

6. Limitations

Reproduced results were created on different hardware to original

results.

Only 10 runs of reproducing, accuracy likely to improve with more

runs.

Only 2 tests supplying all or selected rewrite rules, conclusion might

not hold generally.

Only 3 tests supplying selected or selected and implied rewrite rules,

more tests could lead to different conclusion.

7. Conclusion

The claims in [3] that egg improves upon the eq-sat concept are correct,

although the exact amount of speedup seems to be an overestimate. Egg

also seems to be fasterwhen unused rewrite rules are removed, andmight

benefit from including implied rewrite rules, but the results were incon-

clusive

References

[1] H. Massalin, “Superoptimizer: A look at the smallest program,” ACM

SIGARCH Computer Architecture News, vol. 15, pp. 122–126, 5 Nov.

1987, ISSN: 0163-5964. DOI: 10.1145/36177.36194.

[2] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality saturation: A new

approach to optimization,” Logical Methods in Computer Science, vol. 7,

1 2011, ISSN: 18605974. DOI: 10.2168/LMCS-7(1:10)2011.

[3] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha,

“Egg: Fast and extensible equality saturation,” Proceedings of the ACM

on Programming Languages, vol. 5, POPL 2021, ISSN: 24751421. DOI:

10.1145/3434304.

CSE3000 - June 2022

https://doi.org/10.1145/36177.36194
https://doi.org/10.2168/LMCS-7 (1:10) 2011
https://doi.org/10.1145/3434304

	References

