Performance of Covariance Neural Networks on Rating Prediction

Timothy Axel timothyaxel@student.tudelft.nl

1. Background

Covariance Matrix: a square matrix summarizing the second-order relationships of different variables

	•		
$Cov(u_1, u_1)$	$Cov(u_1, u_2)$	$Cov(u_1, u_3)$	$Cov(u_1, u_4)$
$Cov(u_2, u_1)$	$Cov(u_2, u_2)$	$Cov(u_2, u_3)$	$Cov(u_2, u_4)$
$Cov(u_3, u_1)$	$Cov(u_3, u_2)$	$Cov(u_3, u_3)$	$Cov(u_3, u_4)$
$Cov(u_4, u_1)$	$Cov(u_4, u_2)$	$Cov(u_4, u_3)$	$Cov(u_4, u_4)$

Covariance measures dependence between two variables, showing how one variable changes with another.

We can use this to model underlying relationships between users and items for collaborative filtering

2. Research Questions

How do VNNs perform on rating prediction tasks using the covariance matrix as the GSO?

How are VNNs affected by 2. perturbations in their graph structure?

Hypothesis: VNNs will perform better than firstorder models thanks to the high sparsity of the dataset.

UDelft

?

Final Model Performance: 0.9682, std. dev of 0.00553

Comparison to Baselines

Model	RMSE	
VNN	0.9682	
Global Mean	1.1537	
Random	1.8762	
Identity GSO	1.0695	
All-ones GSO	0.9823	

The VNN is able to beat the baseline models, demonstrating that it is properly learning.

Comparison to Other Models

Model	RMSE
VNN	0.9682
МС	0.973
IMC	1.653
GMC	0.996
GRALS	0.945
sRGCNN	0.929
GC-MC	0.905

While able to **beat simpler matrix** completion models, the VNN struggles to beat more advanced models that are able to grasp more relationships.

Robustness Experiment Results

4. Results

The VNN's performance degrades as the covariance matrix is perturbated, implying the model learns second-order relationships.

Responsible Professor: Dr. Elvin Isufi e.isufi-1@tudelft.nl

Supervisors: Andrea Cavallo a.cavallo@tudelft.nl

Chengen Liu c.liu-15@tudelft.nl

5. Conclusions and Limitations

Conclusion

- 1. VNNs are capable of performing strongly in rating prediction tasks by leveraging secondorder relationships using the covariance matrix.
- 2. The stability of VNNs depend on the density of the network and may be prone to oversmoothing.

Limitations

- Transductive Pipeline
- Dataset may be too sparse, so covariance estimate may be too noisy

Future Work

- Combine Architectures
- Better Imputation
- Regularization to overcome oversmoothing

Experiments

Robustness

Force the model to use only a sample of the training data to create the GSO, then train the model and evaluate its performance

Stability

Introduce perturbations into the GSO of a trained model and evaluate its performance

()	
کت ک	
() I I I I I I I I I I I I I	>
0	

The model's performance decreases gradually for the 1-hop VNN, no matter how many layers. These display relatively stable performance when compared to the 2-hop and 3-hop VNNs. This is most likely due to **oversmoothing**. As the network gets deeper, the effects become more exaggerated.

×