Performance of Covariance Neural Networks on Rating Prediction
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5. Conclusions and Limitations

Experiments Conclusion
1.VNNs are capable of performing strongly in
Robustness rating prediction tasks by leveraging second-
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how one variable changes with another.
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Covariance measures dependence between two variables, showing
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for forward passes.
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Force the model to use only a sample of
the training data to create the GSO, then
train the model and evaluate its
performance

Stability

Introduce perturbations into the GSO of a
trained model and evaluate its
performance

order relationships using the covariance matrix.

2.The stability of VNNs depend on the density of
the network and may be prone to
oversmoothing.

Limitations
e Transductive Pipeline

e Dataset may be too sparse, so covariance estimate
may be too noisy
Future Work
e Combine Architectures
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The VNN is able to beat the
baseline models, demonstrating
that it is properly learning.
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While able to beat simpler matrix
completion models, the VNN struggles
to beat more advanced models that are
able to grasp more relationships.

The VNN’s performance degrades as the covariance
matrix is perturbated, implying the model learns
second-order relationships.

These display relatively stable performance when compared to the 2-hop and 3-hop VNNs.
This is most likely due to oversmoothing. As the network gets deeper, the effects become

more exaggerated.




