
Talking Like a Human: How Conversational Anthropomorphism Affects Self-Disclosure to Mental Health Chatbots
Author: Sagar Chethan Kumar Supervisor: Esra de Groot Responsible Professor: Prof. Dr. Ujwal Gadiraju

Delft University of Technology

Background & RelatedWork

AI chatbots offer accessible and non-judgmental spaces for support [1, 7].

A core challenge is fostering self-disclosure, critical for tailored help but shaped by how

chatbots communicate [16].

Conversational anthropomorphism—e.g., humor, small talk—can boost disclosure in casual

settings [2, 19], but may backfire in sensitive contexts [15, 20].

Effects depend on question sensitivity, or how intrusive users perceive a question to be [16].

This interaction is underexplored in mental health chatbot design [12, 11].

Research Questions & Hypotheses

How do conversational anthropomorphism and question sensitivity influence self-disclosure

to AI-powered mental health chatbots?

Research Questions

RQ1. Does conversational anthropomorphism increase willingness to self-disclose?

RQ2. Does the sensitivity of disclosure-intent questions influence willingness to

self-disclose?

RQ3. Is there an interaction between conversational anthropomorphism and question

sensitivity on willingness to self-disclose?

Hypotheses

H1. Conversational anthropomorphism will increase users’ willingness to self-disclose

[12, 11].

H2. Users will be less willing to self-disclose as the sensitivity of questions increases [15, 2].

H3. Conversational anthropomorphism will increase willingness to self-disclose for

low-sensitivity questions but decrease willingness for high-sensitivity questions

[16, 11, 2, 15].

Experimental Setup

Variables:

Independent: Anthropomorphism (low vs.

high), Question Sensitivity (low, medium,

high)

Dependent: Willingness to Self-Disclose

Measures:

Pre-Task: Trust in AI [8], Chatbot Familiarity

[5], Age (5 year bins), and Gender

During Task: Self-Disclosure Willingness,

Perceived Sensitivity

Post-Task: Perceived Anthropomorphism

(manipulation check) [3, 10]

Participants (n=30):

Gender: 60% male, 40% female

Age: 21–25 (53.3%), 16–20 (33.3%),

26–30 (13.3%)

Methodology

Operationalization: Few-shot prompting [18] for persona adoption; embedded conversational

styles [9].

Control (Non-Anthropomorphic): Neutral, formal tone; factual, non-adaptive responses

[20, 15].

Experimental (Anthropomorphic): Informal tone, emojis, humor, typing delays and

indicators; adapted to user willingness and topic sensitivity [2, 16].

Questions: Three randomized scenarios with general dialogue and three fixed disclosure ques-

tions (low, medium, high sensitivity) from the SelfDisclosureItems dataset [13]. Participants
reported willingness rather than actual disclosures.

Analysis Plan:

Factorial mixed ANOVA: Anthropomorphism (between-subjects) × Sensitivity

(within-subjects); 4 confound controls [14].

Manipulation Check: Independent-samples t-test on perceived anthropomorphism.

Effect Sizes and Confidence Intervals: ω2, η2, η2
G, Hedges’ g [6, 4].

Assumption Checks:
Normality: Shapiro–Wilk, Q–Q plots

Sphericity: Mauchly’s test (G–G or H–F correction)

Variance homogeneity: Levene’s test (Welch’s ANOVA if violated) [17]

Results

Figure 1. Willingness to self-disclose by condition (left) and by sensitivity (right).

Figure 2. Willingness to self-disclose across condition and question sensitivity.

Discussion

RQ1. Descriptive trends show higher willingness to self-disclose with anthropomorphic chat-

bots across all sensitivity levels, partially supporting H1. However, this effect was not statistically

significant, suggesting anthropomorphism alone may not meaningfully shift behavior in sensitive

contexts.

RQ2. Willingness decreased as question sensitivity increased, aligning with H2, but this trend

also lacked statistical significance after correction, possibly due to limited power.

RQ3. No significant interaction was found. However, under anthropomorphic conditions, will-

ingness remained higher across sensitivity levels, tentatively supporting H3 and potentially sug-

gesting reduced evaluative concerns of topic sensitivity in mental health.

Limitations

Small Sample Size (n = 30): Limited power and increased Type II error risk.
Self-Reported Willingness: May not reflect real-world disclosure behavior.

Survey-Based Design: Reduces ecological validity; lacks depth of open-ended or real-time

interaction.

Assumption Violations: Minor violations of normality and variance homogeneity;

non-parametric methods may be more robust.

Conclusion & FutureWork

Conversational anthropomorphism showed consistent, but non-significant, positive effects on

users’ willingness to self-disclose to mental health chatbots across all question sensitivities. Ques-

tion sensitivity was inversely related to disclosure, but also non-significant. No interaction effects

emerged, though exploratory trends suggest anthropomorphic cues may support disclosure even

with sensitive topics.

Future Work

Use larger, more diverse samples for generalizability.

Include open-ended interactions and behavioral measures.

Apply mixed-methods designs to capture emotional nuance and trust formation.
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