
Laura Pircalaboiu, Casper Bach Poulsen & Cas van der Rest

• and the subjects recorded the accuracy of their category guess.

Deriving a Symbolic Executor for Definitional Interpreters Suitable for the Study of Heuristics

Introduction Results

References

Method: Intermediate Representation

1. A. D. Mensing, “From Definitional Interpreter to Symbolic

Executor ,”en, p. 10, 2019.

2. S. Krishnamurthi, “Programming Languages: Application and

Interpretation,” en, p. 207.

Research Project CSE3000

Discussion & Future Work

l .a.pircalaboiu@student.tudelft.nl

The goal of this research project is to determine whether
any two given definitional interpreters are equal or not
using symbolic execution.

How do we encode interpreters to ensure

consistency in our results and extensibility of the

approach?

The approach works for finding trivial bugs, such as wrong
order of variables or typos, but gives false negatives in the
case of equivalent interpreters that have a different
branch order.

Possible future improvements are:
• Extensions to the programming languages
• Usage of Heuristics and/or branch pruning
• Ability to run two interpreters in (real) lock-step

We compared 8 interpreters that belong to 3 equivalence

classes, for a total of 34 test cases.

The results are reported in the confusion matrix above.

Method: Small Step Transition Function

Intuition: Building Execution Trees

True False

True 4 0

False 10 20

Predicted

Actual

Choice Guard Recursion

• Student submissions in courses are hard to

manually evaluate

• Unit testing insufficient

• Mensing approach to symbolic execution–

effective, but we want to extend it

• Use as starting point: interpreters like defined in

PLAI [2].

We want to create a simple and extensible approach to symbolic

execution.

data Expr = Num Int |

Add Expr Expr

eval :: Expr -> Int

eval (Num i) = i

eval (Add e1 e2) =

eval e1 + eval e2

eval =

([e = Num(i)].

return t)

+ ([e != Num(i),

e = Add(e1, e2)]

.recurse e1 as i1

.recurse e2 as i2

.return +(i1, i2))

Idea adopted from Mensing et al. [1]:

Choice
[x, y, z] [y]

[x]

[z]

