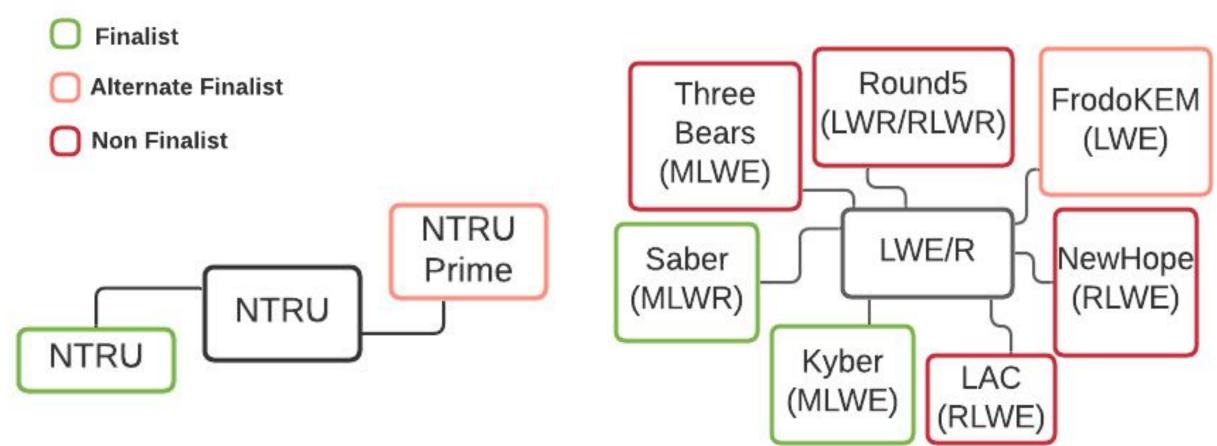
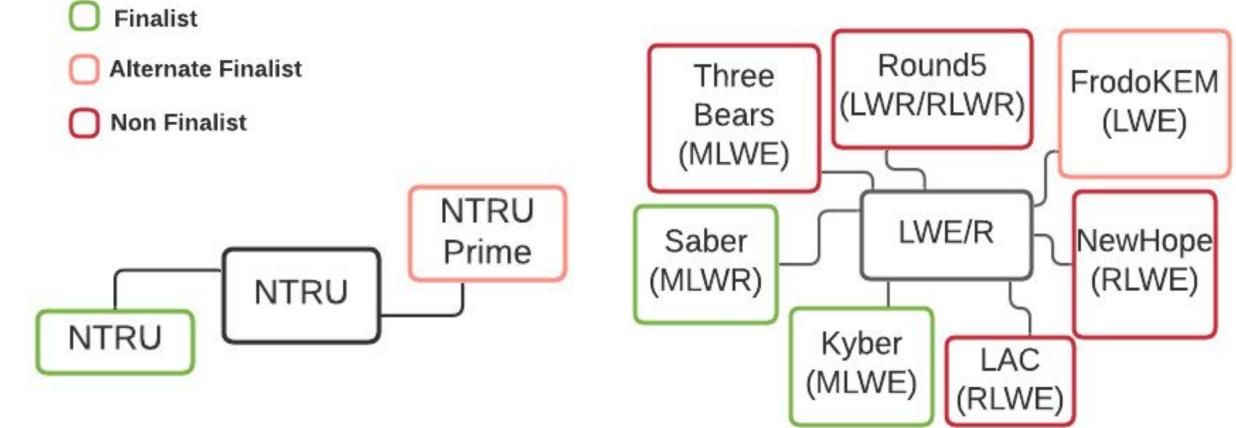
Investigation on NIST post-quantum lattice-based encryption schemes

Giacomo mazzola (G.Mazzola-1@student.tudelft.nl), Kaitai Liang (Kaitai.Liang@tudelft.nl), Huanhuan Chen (H.Chen-2@tudelft.nl)

1. Research Question:


Present the state of the art lattice-based cryptography and perform a comparative analysis of the lattice-based encryption schemes submitted to NIST quantum competition over the following points:


- Theoretical and practical security
- Theoretical and practical level of cost, efficiency and complexity (bandwidth, memory, runtime)
- Computation/distinguishing features
- Potential vulnerabilities and shortages
- Overall complexity of the schemes

2. Method:

- Literature research
- **For each scheme:**
 - read the description paper
 - clone, understand and run the code
 - read public reviews
 - compare it with previous ones
 - draw conclusions and write final paper

3. Analyzed Schemes:

4. Results

	NewHope	FrodoKem	Kyber	Saber	NTRU	LAC	Three Bears	NTRU Lprime	SNTRU	Round5
private key	3 680	43 088	3 168	1 664 (384)	1 592	2 080	(40)	<mark>1 99</mark> 9	1 462	-
bandwidth	5 888	43 152	<mark>3 1</mark> 36	2 784	2 460	2 480	<mark>3 2</mark> 81	2 506	<mark>2 496</mark>	2 272
key gen	<mark>24</mark> 5	30 301	331	131	31 835	377	<mark>118</mark>	45	<mark>940</mark>	10 <mark>1</mark>
encryption	377	<u>32 611</u>	397	159	1 856	643	145	81	45	152
decryption	437	32 387	451	165	4 920	<mark>917</mark>	211	113	94	207
failure rate	2 ⁻²¹³	2 ⁻²⁵²	2-228	2 ⁻¹⁶⁵	0	2 ⁻¹³⁸	2 ⁻²⁵⁶	0	0	2 ⁻²³⁹
primal attack	259/235	281/256	256/ 232	283 257	179/-	323/ 293	354/ 321	<mark>140/15</mark> 3	153/ 139	256/23 3
dual attack	257/233	279/254	256/ 232	338/ 308	N/A	320/ 290		N/A	N/A	257/23 4

of CPU operations.

Experimental data gathered by running schemes on an Intel Core i7-8750H 2.2 GHz with hyperthreading and turbo boost on. Expressed in thousands CPU cycles.

Data for private key and bandwidth (public key + ciphertext) expressed in bytes.

Data for runtime performance expressed in thousands CPU cycles.

Data for primal and dual attack is gathered through theoretical analysis and is expressed in log,

	NewHope	FrodoKem	Kyber	Saber	NTRU	LAC	NTRU Lprime
en	<mark>1</mark> 38	2 813	226	150	3 432	101	6 374
ion	<mark>195</mark>	<mark>3 587</mark>	257	174	341	171	12 708
ion	227	3 414	280	190	169	286	19 060

5. Conclusions

Performance:

- (Module/Ring) LWE/R > LWE/R
- (Module/Ring) LWE/R ~ NTRU

Security:

- theoretically LWE/R > (Module/Ring) LWE/R
- NTRU has no formal proof but has old cryptanalytic history

Complexity:

• (Module/Ring) LWE/R > LWE/R

General:

- Experimental results confirm theoretical claims (except for NTRU LPrime).
- Lattice-based schemes best alternative so far

Future Work:

- Further study of the schemes and performance optimizations
- deploy hybrid schemes for sudden quantum protection