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e Generative Adversarial Networks provide a great
platform for conditional synthesis of comics

e SGAN outperforms both WGAN-GP and DCGAN when
applied to comics

e MC-SGAN generates comics with high semantic
accuracy although it is limited by growth in class
number

e ML-SGAN struggles on more complex problems due to
collapse of the auxiliary classifier

e Generative Adversarial Networks (GANS) [1] excel at
image synthesis.

e Deep Convolutional GAN (DCGAN)[2], Wasserstein
GAN with Gradient Penalty (WGAN-GP)[3], and
Stability GAN (SGAN)[4] represent the state-of-the-art.

e Conditional GANs can be conditioned in order to generate
output that matches a class label.
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Research Question SGAN 128

Can conditional Generative Adversarial Networks
synthesize comics that accurately match preconditions?
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Result of auxihiary

e How does the unconditional performance of DCGAN, Example of :2 classifier collapse in
WGAN—GP, and SGAN compare in th.e comics domain? Van1§h1ng | | ML-SGAN. A viable
e (Can a multi-class and multi-label version of the best gradients seen 1n - colution could be a
performing architecture conditionally generate semantically T DCGAN o rained classif
accurate panels? 04 pro-atier Cranset.
e How does the performance compare between the two Through empirical analysis it was determined that the ResNet based
networks? SGAN architecture synthesized superior comics to both DCGAN
and WGAN-GP. SGAN also proved to be extremely stable.
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