### Evaluating the robustness of DQN and QR-DQN under domain randomization CSE3000 – Research project Youri Zwetsloot – Y.Zwetsloot@student.tudelft.nl

## Background

In reinforcement learning, or RL, an agent learns to make decisions by interacting with an environment or **domain**, receiving feedback in the form of rewards or penalties.

One of the first techniques to use **Deep** Neural Networks, or DNNs, to estimate the overall reward (or **return**), is now known as **Deep Q-Networks** or **DQN**. A variation called **QR-DQN** builds on DQN by estimating the return distribution, instead of just the expected return.

## Problem

**Robustness** is the property of an agent to perform well in environments different from its training environment.

The **sim-to-reality** gap is a related problem that refers to the fact that simulated training environments typically differ a lot from the 'actual' environments, leading to degraded performance.

A common technique to improve robustness and cross the sim-to-reality gap is **domain** randomization (or DR): randomizing environment properties during training.



## Research question

How does domain randomization affect the robustness of DQN and QR-DQN?

# Methodology

We make use of a customizable simulated highway (*highway-env* [1]) environment to train and test DQN and QR-DQN.

We use 3 DR approaches:

1. Naive: 6 - 9 vehicles per lane 2. **Difficult**: 8 or 9 vehicles per lane 3. Multiple properties: lane count, vehicle count, density and politeness (see Table 1).

To evaluate robustness/Sim2Real transfer, we test models (in part) on unseen environments.

| Property      | Default | Training | Testing     |
|---------------|---------|----------|-------------|
| Vehicle count | 7       | 7 - 9    | 5 - 10      |
| Lane count    | 3       | 2 - 3    | 2 - 6       |
| Density       | 1.0     | 1 - 1.2  | 0.7 - 0.1.3 |
| Politeness    | 0       | 0 - 0.5  | 0 - 1.0     |

Table 1: Environment property values in the default, training and testing Highway environments. The training and testing environments use domain randomization.



Figure 1: A still of our simulated highway environment. The green 'car' is operated by our agent.

### References





DQN QR-DQN DQN (6 - 9) **QR-DQN (6 - 9)** DQN (8 - 9) **QR-DQN (8 - 9)** 

Table 2: **Single property**: metrics for (QR-)DQN, with and without DR. Only the vehicle count is changed between DR environments.

### DQN

**QR-DQN** 

DQN (DR)

### QR-DQN (DR)

Table 3: Multiple properties: metrics for (QR-)DQN, with and without DR. Property values set according to Table 1...





Professor: Frans Oliehoek Supervisor: Mustafa Celikok

| <b>Reward/step</b> | Length     | Crash rate  |
|--------------------|------------|-------------|
| 0.78               | 74.2 / 100 | <b>48</b> % |
| 0.75               | 75.9 /100  | 38%         |
| 0.76               | 84.1/100   | 34%         |
| 0.77               | 80.5 / 100 | 34%         |
| 0.75               | 78.3 / 100 | 30%         |
| 0.75               | 91.3 / 100 | 16%         |

| <b>Reward/step</b> | Length     | Crash rate |
|--------------------|------------|------------|
| 0.76               | 81.8 / 100 | 34%        |
| 0.76               | 86.2 /100  | 24%        |
| 0.78               | 75.5 / 100 | 38%        |
| 0.75               | 88.0 / 100 | 22%        |



Figure 2: Plots of DQN's return and episode length over 100K steps, when trained without DR. 5 different seeds were used.

1. **QR-DQN** achieves a lower crash count, **DQN** a higher reward/step (risk vs. reward) 2. Difficult to get DR right... 3. ...but DR can improve robustness and achieve Sim2Real transfer 4. Focus on **hard** environments