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f Background § Research question f Results

N reinforcement learning, or RL, an agent How does domain randomization affect the Reward/step Length Crash rate
. . . . ) 5
earns ’FO Make decisions |§>y mtera;tmg With robustness of DON and QR-DON- DON 0.78 74.2 /100 48%
]zcan zrk;wrirj mtintfo dor?aln, redcewmg . OR-DON 07c 759 /100 200,
eedback in the form of rewards or penalties. ) 5
IMethOdOlOgy DQN (6 ?) | 0.76 841 //100 34%
. . QR-DQN (6 -9 0.77 80.5 /100 34%
One of the first technigues to use Deep . . ’
. We make use of a customizable simulated DQN (8 - 9) 0.75 78.3 /100 30%
Neural Networks, or DNNs, to estimate the . . . .
. highway (highway-env [1]) environment to train QR-DQN (8 - 9) 0.75 91.3 /100 16%
overall reward (or return), is now kKnown as . _ |
K DON A L led and test DON and QR-DON. Table 2: Single property: metrics for (QR-)DQN, with and
Deep Q-Netyvor S Or Q - v.ar d ~!On Calle without DR. Only the vehicle count is changed between DR
QR-DON builds on DON by estimating the We use 3 DR approaches: environments.
return déjstﬂouuon, iNnstead of just the Reward/step Length Crash rate
expected return. . .
P 1. Naive: 6 - 9 vehicles per lane DQN 0.76 81.8 /100 347%
2. Difficult: 8 or 9 vehicles per lane QR-DQN 0.76 86.2 /100 24%
3. Multiple properties: lane count, vehicle DQN (DR) 0.78 75.5/100 38%
count, density and politeness (see Table 1). QR-DQN (DR) 0.75 88.0 /100 22%
Table 3: Multiple properties: metrics for (QR-)DQN, with and
I PrOblem To evaluate robustness/S/erRea/ tra nsfer, wWe without DR. Property values set according to Table 1.

Robustness is the property of an agent to test models (In part) on unseen environments..
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oerform well in environments different from — , 0 '
te trai ﬂiﬂg cnvironment Property Default Tralning Testing o 22 -
| Vehicle count 7 7-9 5-10 . o
14
The sim-to-reality gap is a related problem -ane count 2 2-3 2-6 4 0
that refers to the fact that simulated training Density 10 -1z 0.7-0.1.35 0 20k 40k 60k 8Ok 100k 0 20k 40k 60k 80k 100K
: : - _ Politeness O O-05 O-10 Figure 2: Plots of DON'’s return and episode length over 100K
environments typlca | ‘y differ a lot from the . . o steps, when trained without DR. 5 different seeds were used.
‘actual environments. leadi ng to deg raded Table 1: Environment property values in the default, training and
! testing Highway environments. The training and testing .
IOGHCOF Mance. environments use domain randomization. I C Onc1u51ons

A common technigue to iImprove robustness
and cross the sim-to-reality gap is domain
randomization (or DR): randomizing
environment properties during training.

1. QR-DQN achieves a lower crash count,
DQN 2 higher reward/step (risk vs. reward)

2. Difficult to get DR right...

5. ..but DR can improve robustness and

Figure 1: A still of our simulated highway environment. The green achieve SIm2Real transfer

car'is operated by our agent 4. Focus on hard environments
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