Leveraging Efficient Transformer Quantization
A Post-Training Analysis

for CodeGPT

Large Language Models are increasingly popular in machine learning for their natural language understanding abilities. Code auto-completion is a
major use case, providing relevant suggestions to developers. However, the high costs and ethical concerns of deploying large models on resource-
limited devices and online services are challenges.
We demonstrate that CodeGPT has high resilience to quantization noise, enabling the model to be compressed by four times its size with minimal
accuracy loss using post-training quantization techniques.
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efficacy of these techniques on the
CodeGPT model.

In this research, we strive to investigate
the question:

QQ "How effective are post-training

quantization techniques (PTQ) for
compressing a CodeGPT generation

model?". ”
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mitigate noise and determine optimal
quantization parameters for each
tensor.

. Calibration involves estimating the
scale factor and zero point using
range estimators
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We compare our best results, to the
following other compression approaches:
. De Moor [3] uses hybrid in-training

knowledge distillation, layer reduction,

and quantization techniques.
. Malmsten [4] uses in-training
knowledge distillation techniques.
. Sochirca [5] utilizes hybrid post-
training pruning and quantization

techniques on CPUs.
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We find that the best results are achieved
with the following parameters:
. MSE for weight quantization Range
Estimator
. >=8 bits for weights
. >=16 bits for activations
. 16-bit residual sum of block for MP PTQ
. 4 permuted groups for PEG PTQ

Figure 2:

An overview for several choices of
activation quantization granularity. The
color indicates quantization parameter
sharing. In all cases we assume per-
tensor weight quantization. [1]

Comparison of compression approaches:
Size % (blue), ES (black), EM (brown)

5. Conclusion

. Naive PTQ implementation achieves a
compression rate of 4x with negligible
accuracy loss.

« Advanced PTQ methods like mixed-
precision, per-tensor, or per-
embedding-group can virtually
eliminate accuracy loss.

. CodeGPT is most susceptible to
quantization of fewer than 8 bits for
weights and less than 16 bits for
activations.

« Performance loss could not be
recovered for 4-bit quantization of
weights using the implemented
techniques.

6. Limitations

. The study simulated quantization,
suggesting the need for future
investigations using tensor
quantization on different hardware.

. Further analyses can validate the
performance of PTQ methods on
CodeGPT, determine inference time
speedup, and assess reduction in GPU
size during runtime.
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