Leveraging Efficient Transformer Quantization
A Post-Training Analysis

for CodeGPT

Large Language Models are increasingly popular in machine learning for their natural language understanding abilities. Code auto-completion is a
major use case, providing relevant suggestions to developers. However, the high costs and ethical concerns of deploying large models on resource-
limited devices and online services are challenges.
We demonstrate that CodeGPT has high resilience to quantization noise, enabling the model to be compressed by four times its size with minimal
accuracy loss using post-training quantization techniques.

1. Introduction 2. Background 3. Methodology 4. Results 100

. Large Language Models' (LLMs) But what is post-training quantization? Our methodology involves implementing, The CodeGPT model is fine-tuned and =
substantial size presents significant comparing, and evaluating different PTQ tested on the PY150 dataset of Method ES EM Compression 75
hurdles for their deployment. . Quantization involves reducing the metho‘ds: o CodeXGLUE [2] on the Auto-Completion Baseline 41 17 1x

« High running costs, limits LLMs' usage precision of the model’s weights and + Naive _PTQ: applies §|mple per-tensor task. WSAS 8 16 x S0
on resource-limited devices, and raise activations, thereby diminishing the quantization on weights and WSA32 40 17 4
practical and ethical concerns when memory footprint and enhancing activations without optimizations. We calculate the accuracy of our model X 25
accessed through online services. inference speed . Mixed-precision (MP) PTQ: uses on 1000 samples using the Edit Similarity WsAle 40 17 4x I

. Researchers have explored many . PTQ s a quantization approach different bit-widths for activation and Exact Match metrics: \\2//22:1)’2 gg }i g: o u
compression techniques, including applied to pre-trained models without tentsors.tc? redt_Jce accuracy .Ioss while - Edit similarity (ES): quqntlfle§ the & O O (@ o°‘ & 0
knowledge distillation, pruning, and any additional training. mcuntcunmg.hlgh compression rcitces. structural and semc’mtlc similarity 0‘;“0\\ QQ OQ 00\\ 0‘:\ \&é 60\‘
quantization. . The quantization process introduces . Per-gmbedderg-g.roup (PEG) PTQ: between the model's output and the . ‘q, S Q‘v -\8’ ¥ & f

. Most of the research focuses on noise to the network, which can applies quantization to separate expected output. ~ Figures: o° 4\0
compressing BERT-like models. Almost potentially degrade performance. groups of embeddings based on their - Exact match (EM): measures the Naive PTQ Experiments:
no research has been done on the . Calibration is a process used to usage patterns. number of times the model’s output WxAy means quantization with x bits for

matches the expected output exactly. weights and y bits for activations Figure 4:

efficacy of these techniques on the
CodeGPT model.

In this research, we strive to investigate
the question:

QQ "How effective are post-training

quantization techniques (PTQ) for
compressing a CodeGPT generation

model?". ”

References

mitigate noise and determine optimal
quantization parameters for each
tensor.

. Calibration involves estimating the
scale factor and zero point using
range estimators

xZ = clip({E-‘ +2;0,2° — 1)

Figure 1:
Asymmetric quantization function [1]

[1] Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the challenges of efficient
transformer quantization. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages
7947-7969, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.

[2] Yiming Lu, Meng Zhang, Yuncong Li, and Xiaodong Liu. Codexglue: A machine learning benchmark dataset

for code understanding and generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language

We compare our best results, to the
following other compression approaches:
. De Moor [3] uses hybrid in-training

knowledge distillation, layer reduction,

and quantization techniques.
. Malmsten [4] uses in-training
knowledge distillation techniques.
. Sochirca [5] utilizes hybrid post-
training pruning and quantization

techniques on CPUs.
W

(b) per-embedding-group

(a) per-tensor

X

X

We find that the best results are achieved
with the following parameters:
. MSE for weight quantization Range
Estimator
. >=8 bits for weights
. >=16 bits for activations
. 16-bit residual sum of block for MP PTQ
. 4 permuted groups for PEG PTQ

Figure 2:

An overview for several choices of
activation quantization granularity. The
color indicates quantization parameter
sharing. In all cases we assume per-
tensor weight quantization. [1]

Comparison of compression approaches:
Size % (blue), ES (black), EM (brown)

5. Conclusion

. Naive PTQ implementation achieves a
compression rate of 4x with negligible
accuracy loss.

« Advanced PTQ methods like mixed-
precision, per-tensor, or per-
embedding-group can virtually
eliminate accuracy loss.

. CodeGPT is most susceptible to
quantization of fewer than 8 bits for
weights and less than 16 bits for
activations.

« Performance loss could not be
recovered for 4-bit quantization of
weights using the implemented
techniques.

6. Limitations

. The study simulated quantization,
suggesting the need for future
investigations using tensor
quantization on different hardware.

. Further analyses can validate the
performance of PTQ methods on
CodeGPT, determine inference time
speedup, and assess reduction in GPU
size during runtime.

Processing, pages 6725-6736, 2021 Supervisors Dr. Maliheh Izadi, ir. Ali Al-Kaswan
[3] Aral D de Moor. Codegpt on xtc, 2023
[4] Emil Malmsten. Distilling code-generation models for local use, 2023

[5] Dan Sochirca. Compressing code generation language models on cpus, 2023

Authors Mauro Storti | m.storti@student.tudelft.nl

-
TUDelft

Responsible Professor Prof. Dr. Arie van Deursen University EEMCS, Delft University of Technology

