Analyzing The Impact of Mutations on Genetic Algorithms for Finding the Lowest Energy **Structure of Atomic** Clusters

- Based on the positions and types of these atoms we can compute the potential energy of a cluster
- Finding the lowest-energy structure of a cluster of atoms is a proven NP-Hard problem [1] that has important implications in the field of materials science
- An efficient way of solving this problem could help with discovering new materials with potential applications in areas such as biomedical imaging [2], semiconductor development [3], and aerospace engineering [4]
- Methods of solving: Simulated Annealing, Basin Hopping, Genetic Algorithms (GA)
- GA solutions are very varied and employ a multitude of different mutation operations
- We do not know the impact and effectiveness of each individual mutation

3. Methodology

- Start from a simple implementation of a GA that can solve the problem on small clusters and experiment on different mutations
- Local Optimizer: BFGS
- Lennard-Jones Potential is used to compute the energy of the cluster (Fitness Function)
- Crossover: Cut-and-Splice
- Stopping criteria: global minimum reached / 100 iterations reached / no improvement in past 10 iterations

The following mutations have been compared:

- Atom Replacement
- Cluster Replacement
- Center of Mass Spherical (CoM-S)
- Random Displacement
- Etching
- Neighbor
- Random Walk

5. Conclusions

- Atom Replacement, Cluster Replacement and Random Walk do not bring any improvements to the GA
- Etching performs best in terms of accuracy
- Random Displacement and Twist perform best in terms of convergence time
- CoM-S and Neighbor also fast, but more unstable
- It is suggested that future GA's use a combination of Etching and other fast converging mutations

Mutations evaluated based on accuracy (number of finished runs finding global minimum) and speed (runtime)

- Each mutation is benchmarked with multiple probabilities ranging from 0.005 to 0.3
- Experiments are ran on clusters with 13, 19, 25, 27, 28, 31 and 38 atoms
- Experiments are ran using population sizes of 8, 15 and 20
- Each experiment is ran 10 times in order to get an average value of the time to converge

6. Future Work

- Can Etching be improved with a different local optimizer?
- Do our results translate to larger clusters / population sizes or different fitness functions?
- How well do hybrid mutations strategies (containing multiple types of mutations) perform?

References

[1] L. T. Wille and J. Vennik. "Computational complexity of the ground-state determination of atomic clusters". In: Journal of Physics A: Mathematical and General 18.8 (1985), pp. L419–L422. [2] Sanne M. van de Looij et al. "Gold Nanoclusters: Imaging, Therapy, and Theranostic Roles in Biomedical Applications". In: Bioconjugate Chemistry 33.1 (2022). PMID: 34894666, pp. 4–23. [3] Michael Galchenko et al. "Field Effect and Photoconduction in Au25 Nanoclusters Films". In: Advanced Materials 31.18 (2019), p. 1900684. [4] Abhishek K. Pathak and Sanjay R. Dhakate. "Carbon Nanomaterial-Carbon Fiber Hybrid Composite for Lightweight Structural Composites in the Aerospace Industry: Synthesis, Processing, and Properties". In: Advanced Composites in Aerospace Engineering Applications. Ed. by Norkhairunnisa Mazlan, S.M. Sapuan, and R.A. Ilyas. Cham: Springer International Publishing, 2022, pp. 445-470.

1. Introduction

• A cluster of atoms is a finite group of atoms bound together by physical or chemical forces.

2. Research Question

"What is the best mutation operation for a genetic algorithm finding the lowestenergy structure of a cluster of atoms in terms of how often and how fast it finds the global minimum?"

4. Results

Population 8

Etching performs best in terms of finding global minimum but is the slowest

CoM-S and Neighbor have slightly lower accuracy Random Displacement and Twist even lower accuracy CoM-S, Neighbor, Random Displacement and Twist

perform similarly in terms of runtime Atom / Cluster Replacement and Random Walk perfor

the same as using no mutations

Population 15

Etching still the best performer in terms of accuracy CoM-S, Neighbor, Random Displacement and Twist have very similar accuracy and runtimes

Random Displacement and Twist seem to have more stable runtimes

Population 20

Random Displacement seems to benefit from high populations

Runtime of Etching appears much closer to the others

Authors

Stefan Bud sbud@tudelft.nl

Responsible Professors

Peter Bosman Anton Bouter Vanessa Volz

