
A Case Study of Why3 as a Tool for Automated Software Verification

Why3 and Proving A* Automatically 



Kajetan Neumann TU Delft, CSE3000 Research Project https://repository.tudelft.nl/

 What is Why3?
Why3 is a platform for automated 
deductive program verification.



It allows users to implement 
programs, and then offloads the 
proofs to external theorem provers 
(e.g. Z3, E Prover, etc.).



It provides various tools to aid in the 
verification process

 a language (WhyML) for 
expressing logic and program

 many logic transformations to 
guide the proving proces

 proof sessions to save and 
replicate the proof

 an IDE to view and edit code/
proofs



WhyML Verification Constructs:

WhyML Logical Constructs:

WhyML Program Constructs:

 Introduction to Formal Verification

“Program testing can be used to show the presence of bugs, but never to show their absence!” 


~ Edsger W. Dijkstra 

Formal Verification - a method of software verification whereby the correctness of a program is proven through 
formal mathematical reasoning

 Stronger guarantee of correctness than software testin
 Time-consumin
 Difficult



There are different types of computer-aided verification software that can be used to automate this process
 Interactive Theorem Provers: Rocq, Isabell
 Automated Theorem Provers (ATPs): Vampire, E Prover, SPAS
 SMT Solvers: Alt-Ergo, CVC5, Z3


 The Goal
To explore the capabilities and limitations of Why3 as a tool for automated 
software verification, through a case study of verifying the correctness of 

the A* algorithm.

 Why A*?
A* is a heuristic-based algorithm which 
finds the shortest distance through a 
graph from a given source to a given 
destination. It can be thought of as an 
extension of Dijkstra’s algorithm, by 
introducing a heuristic to estimate the 
distance from a vertex to the destination



There are a couple of reasons to chose 
A* for our case study:

 Its complexity could showcase more 
of Why3’s features and lead to more 
interesting observations.

 Dijkstra’s algorithm has been 
previously verified in Why3 by 
J.C.Filliâtre, which was a useful 
resource on how to approach the 
proof.

 Results
Run-time Figures for Each External 
Prover Used in Our Proof:

Number of Logical Transformations 
Used in The Proof:

 Observations
Usability

 High expressiveness 
of WhyML

 Simple installation 
proces

 Why3 IDE lacks the 
“undo” featur

 Limited/out-dated 
documentation


Automation
 Fast, consistent, and 

reproducible proof 
generatio

 ATPs are useful 
despite out-dated 
versions supported 
by Why

 Manual proving is still 
a large component



Program Verification
 Possibility of principle 

of explosion in Why
 Pre/post-loop states 

are linked through 
invariants



 Conclusions and Future Work
We found that the main advantages of Why3

 highly expressive languag
 the speed, consistency, & reproducibility of its proof
 its simple installation process. 



However, there were a few limitations we foun
 there’s missing documentation for in the Why3 Manual for a lot of feature
 proofs still involve a large amount of manual provin
 there is the danger of a proof by the principle of explosion.



We outline the following future work in this field
 explore Why3’s ability to run code written in WhyML by applying it to our 

implementation.
 attempt to prove different variations/optimisations of A*.
 testing Why3 on a wider variety of problems and comparing it against 

other software tools.

 Implementation 
Approach

Procedure
 Define the algorithm with 

pseudocode and introduced a few 
properties we know must hold for a 
correct implementation

 Implement this in WhyML and use 
Why3’s toolset to prove these 
properties.

The Properties We Proved
 Optimal Substructre Property of 

Shortest Path
 Consistency Implies Admissibilit
 Termination and Completeness 

Propertie
 Optimal Efficiency Propert
 Minimal Expansion Propert
 Open Optimum Property


