Why3 and Proving A* Automatically

%
TUDelft

A Case Study of Why3 as a Tool for Automated Software Verification

- | S~

1. The Goal

To explore the capabilities and limitations of Why3 as a tool for automated
software verification, through a case study of verifying the correctness of
the A* algorithm.

2. Introduction to Formal Verification

“Program testing can be used to show the presence of bugs, but never to show their absence!”
~ Edsger W. Dijkstra

Formal Verification - a method of software verification whereby the correctness of a program is proven through
formal mathematical reasoning.

+ Stronger guarantee of correctness than software testing

+ Time-consuming

+ Difficult

There are different types of computer-aided verification software that can be used to automate this process:
* Interactive Theorem Provers: Rocq, Isabelle
+ Automated Theorem Provers (ATPs): Vampire, E Prover, SPASS
» SMT Solvers: Alt-Ergo, CVC5,Z3

' 3. What is Why3?

Why3 is a platform for automated
deductive program verification.

WhyML Verification Constructs:

ensures | Ioduces a fncion poseondiion.

Introduces a decreasing variant which
proves loop termination.
It provides various tools to aid in the [I5® Used in condition to reference the initial
VenﬂCathn prOCeSS state of a mutable variable.
a language (WhyML) for
expressing logic and programs
+ many logic transformations to
guide the proving process
- proof sessions to save and
replicate the proofs
- an IDE to view and edit code/
proofs

WhyML Program Constructs:

ghost Marks code as “ghost code”,
which is only added for verifica-
tion purposes.
Introduces a new data type.
abstract Makes all fields in a record ac-
cessible only in ghost code.

Makes a record field mutable.

It allows users to implement
programs, and then offloads the
proofs to external theorem provers
(e.g. Z3, E Prover, etc.).

WhyML Logical Constructs:
Universal and existential quantifiers.

(

___-‘_‘

Kajetan Neumann

TU Delft, CSE3000 Research Project

4. Why A*?

A* is a heuristic-based algorithm which
finds the shortest distance through a
graph from a given source to a given
destination. It can be thought of as an
extension of Dijkstra’s algorithm, by
introducing a heuristic to estimate the
distance from a vertex to the destination

There are a couple of reasons to chose

A* for our case study:

+ Its complexity could showcase more
of Why3's features and lead to more
interesting observations.

+ Dijkstra’s algorithm has been
previously verified in Why3 by
J.CFilliatre, which was a useful
resource on how to approach the
proof.

5. Implementation
Approach

Procedure:

1. Define the algorithm with
pseudocode and introduced a few
properties we know must hold for a
correct implementation.

2. Implement this in WhyML and use
Why3's toolset to prove these
properties.

The Properties We Proved:

Optimal Substructre Property of
Shortest Paths

Consistency Implies Admissibility
Termination and Completeness
Properties

Optimal Efficiency Property
Minimal Expansion Property
Open Optimum Property

—w s oo

3

+ Simple installation
process

6. Results
Run-time Figures for Each External Number of Logical Transformations
Prover Used in Our Proof: Used in The Proof:
Alt-Ergo 2.6.2 X Z
CVC51.2.1 .
Eprover 2.0 . 3 destruct rec 9
5 T ‘
induction pr
-
7. Observations
Usablllty Automation: Program Verification: '
+ High expressiveness + Fast, consistent,and + Possibility of principle
of WhyML reproducible proof of explosion in Why3
generation + Pre/post-loop states

+ ATPs are useful are linked through

+ Why3 IDE lacks the despite out-dated invariants ‘
“undo’ feature versions supported
+ Limited/out-dated by Why3
documentation + Manual proving is still
a large component
T S A
8. Conclusions and Future Work

We found that the main advantages of Why3:
+ highly expressive language
+ the speed, consistency, & reproducibility of its proofs
+ its simple installation process.

However, there were a few limitations we found
+ there's missing documentation for in the Why3 Manual for a lot of features
+ proofs still involve a large amount of manual proving
+ there is the danger of a proof by the principle of explosion.

We outline the following future work in this field:
+ explore Why3's ability to run code written in WhyML by applying it to our
implementation.
+ attempt to prove different variations/optimisations of A*.
+ testing Why3 on a wider variety of problems and comparing it against
other software tools.

https://repository.tudelft.nl/



