1. Introduction 2. Research Question

A study of how outlier detectors
can accurately auvuthenticate S Gap in knowledge

e Accessible to many people e Most research is about identifying a specific user ([1], [2], [3])

° o :
m U ltl p le pe rso n s U SI n g t h e h ea rt e Already very good for health and fitness tracking * Data mostly gathered from complex devices

e When it comes to authentication ([4] and [5], there is not

ra t e fro m co n s U m e r-g ra d e Person identification much research on outlier detectors

e Many available methods (accounts, pins, biometrics,

wearables otc)
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3. Methodology Gaussian mixture model (GMM) One Class SVM  The results are a mean of 100
° . .
The results are a mean of 100 combinations of 1 known and 11
: combinations of 1 known and 11 unknown people
1) Data processing 1) N nown beonle 1) TvN
PEOP nu  MFCC components PCA dimensionality  statistical features mean AUC  std AUC
GMM distnnbutions  MFCC components  PCA dimensionality  statistical features  mean AUC  std AUC l 0.8 30 100 0.648 0115
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Table 1: Top 4 Gaussian Mixture models with 1h windows in one versus many case
Interval Interval Interval nu  MFCC components PCA dimensionality  statistical features mean AUC  std AUC
m Dataset GMM distributions  MFCC components ~ PCA dimensionality statistical features mean AUC  std AUC | 0.8 5 450 0.785 0112
1. 4 5 0 [mean, median| 0.936 0.044 3 08 3 3350) 0 7%5 0112
1st window Transformations Data point 3. 4 5 100 1 0.935 0.043 * - - L0 Mt
P 4. 4 5 500 ] 0.935 0.043 4. 1 08 S 20 | 0.785 0.112
m Transformations Data point Table 2: Top 4 Gaussian Mixture models with 3h windows in one versus many case Table 4: Top 4 One Class SVM models with 3h windows in one versus many case
3rd window Transformations Data point 1h windows: 3h windows: 1h windows: 3h windows:
e No MFCC: 0.634 e No MFCC: 0.746 e No MFCC: 0.648 e No MFCC: 0.676
Transformations = statistical features +  No PCA: 0.746  No statistical: 0.89 e« No PCA: 0.635 e« No PCA: 0.758
Mel-frequency cepstral coefficients (MFCC) +
Principal component analysis (PCA) 2) NVN 2) NVN
- ® One mode! T ® One model
2) OUtlier detectors training 0.9 - | T __ B B ® Multiple models . - $® Multiple models
t ' 17T 1 + e . . T T T - T T The models in Figure 2 are trained with the
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> one model that trains all the known persons ¢ | L | combinations of 2-12 known and 6 unknown IR combinations of 2-12 known and 6 unknown
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o multiple models, one per known person, results aggregated " people . people
Models 041
e Gaussian mixture model (GMM) 2 3 4 5 6 7 8 5 10 U 1 : 3 4 5 6 7 8 5 1 1 12
. Number of authorised subjects Number of authorised subjects
* One Class SUppOI’t Vector Machine (one Class SVM) Figure 1: One model GMM performance versus multi-model GMM performance Figure 2: One model One Class SVM performance versus multi-model One Class SVM performance
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e the Gaussian mixture model performs the separation better than the One Class SVM with the best
mean AUC of 0.936, against the best score of 0.785
e the Gaussian mixture model achieves more stable results (lower AUC standard deviation)
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12 subjects were taken with more than 12 subjects




