
RESEARCH POSTER PRESENTATION TEMPLATE © 2019

www.PosterPresentations.com

Computer Science and Engineering – TU Delft

Luka Janjić (L.Janjic@student.tudelft.nl)

Supervisors: Jesper Cockx and Lucas Escot

Practical Verification of a Free Monad Instance

Background

Research Method

Results Conclusions

1. Port a portion of Haskell’s free monad

library to Agda

2. State and prove monad laws

3. Transpile the Agda code back to

Haskell using Agda2HS

4. Verify that the generated Haskell code

is equivalent to the one from the original

library

Translated Free to Agda, representing

the first parameter by a container:
Current capabilities of Agda2HS are

not nuanced enough to handle

alternative representation of

parameters

data Free (F : Container00) (A : Set) : Set
where

pure : A → Free F A
free : ⟦ F ⟧ (Free F A) → Free F A

monad-right-id (free fa) =
begin

free (fmap (_>>= pure) fa)
=⟨ cong free (fmapBindToReturnIsId fa) ⟩

free fa
end

Research Question

How can a free monad data type

Free be formally verified using

Agda2HS?

 How can the definition of Free and its

monad instance be precisely translated

to Agda?

 Can we, and how, verify the monad

laws on the traslation?

 Can the translation be made such that

Agda2HS translates it the original

Haskell definition?

Agda

Strict Positivity

Free Monad

Containers

 Finer structuring of large, monolithic

monads such as IO

 Convenient way of embedding domain

specific languages

data Free f a = Pure a | Free (f (Free f a))

 Total

→all programs terminate

 Purely functional

→everything is a function

 Dependently typed

→type system also a logic system

 A restriction on data types in Agda

 Prevents direct translation of Free

 Parameter f is not strictly positive

[[S ▷ P]] X = Σ[s ∈ S] (P s → X)

 Uniform way of representing strictly

positive types

 Determined by types S (shape) and

P(s) (positions)

 Allows for reasoning about the most

general case permissible by Agda

data Free (F : Container00) (A : Set) : Set
where

pure : A → Free F A
free : ⟦ F ⟧ (Free F A) → Free F A

Reached the limits of Agda2HS:

 The resulting formulation of Free

cannot be handled by Agda2HS

 More fine grained control over the

translation is required

Proved that the monad laws hold for

the Free data type

monad-left-id
: (a : A) → (f : A → Free F B)
→ (return a >>= f) ≡ f a

monad-right-id : (m : Free F A)
→ m >>= return ≡ m

monad-assoc : (m : Free F A)
(g : A → Free F B) (h : B → Free F C) →

(m >>= g) >>= h ≡ m >>= (λ x → g x >>= h)

data Free (F : Container00) (A : Set) : Set
where

pure : A → Free F A
free : ⟦ F ⟧ (Free F A) → Free F A

Desired translation basis:

data Free (F : Set → Set) (A : Set) : Set
where

pure : A → Free F A
free : F (Free F A) → Free F A

Suggested improvement to the tool

 The F’s type must be translated as a

more general type Set → Set

 The ”instantiation” of F (i.e. ⟦_⟧) must

be omitted in the translation

 Include an annotation declaring an

alternative representation is used in a

definition

 Two mandatory arguments:

 What type is replaced (Container00)

 By what is it replaced (Set → Set)

 One optional argument for declaring

the ”instantiation” function (⟦_⟧)

@R{Container00} {Set → Set} {⟦_⟧}
data Free (F : Container00)

(A : Set) : Set where
pure : A → Free F A
free : ⟦ F ⟧ (Free F A) → Free F A

Example syntax

