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• All the experimented curves seem not be well-behaved
and not monotonically decreasing.

• Regardless noise distribution types, the higher the noise
level, the more complex the problem and the more varying
the learning curve shapes.

• Some noisier curves cross less noisy curves.

• The discretized curves are considered strange curves and
do not behave exponentially, thus not belonging to the
discrete problem class in [1].

• The curves cross each other when many features is
discretized

• The lower numbers of principal components, the worse
performance of the learners and the more unpredictably
the shapes of the curves change

• Ideal number of dimensions for different anchors.

• A learning curve is a tool for plotting 

a machine learning model's 

generalization performance against 

incremental subsets of training data.

• Applications: model selections, 

reducing complexity

• However, no universal model for 

learning curve shapes [2]

• Lower dimensionality, worse 

performance?

• Can noise make the problem more 

complex?

• Can discrete problem [1] be learned 

faster (exponentially)?

• Research question:

"How do the inherent factors 

related to the datasets such as 

noise, types of numerical input, and 

dimensionality influence the shapes 

of the learning curves?“
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Learning curve generating

• Kfold cross-validation

• Anchor (training size) 𝑠𝑖= 2
7+𝑖

2 [3]

• Anchor 𝑆𝑖 ⊂ 𝑆𝑖+1
• For each anchor:

• Preprocessing

• Tuning

• Average over k to get the mean learning curve

Feature noise model

Every entry 𝑥𝑖𝑗 in the matrix 𝑋 ∊ 𝑅𝑁×𝐷 will be replaced

by 𝑥𝑖𝑗
′ which can be calculated as follows:

𝑥𝑖𝑗
′ = 𝑥𝑖𝑗 + 𝑛𝜎𝑥𝑗𝑧𝑗 𝑖𝑓 𝑛 > 0

Where:

• 𝑛 is the noise level

• 𝜎𝑥𝑗 is the standard deviation of feature 𝑥𝑗
• 𝑧𝑗 is random variable: 𝑧𝑗 ∼ 𝑁(μ, σ2) for normally

distributed noise and 𝑧𝑗 ∼ 𝑈(a, b) for uniformly

distributed noise

Equal width interval binning

Dimensionality

Using Principal Component Analysis (PCA) to

transform the original dataset into different datasets

with different dimensions

Methodology

Figure 1: The learning curves of the 

dataset injected normally distributed 

noise

Figure 2: The learning curves of the 

dataset with different principal 

components 

Figure 3: Learning curves of dataset with different discretized features. The number of bin 𝑘 = 10

(a) Unscaled version (b) Log scale error
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