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1. Background

Neural networks are vulnerable to adversarial attacks – tiny perturbations to input data that

elicit misclassifications [4]. Gradient-based adversaries leverage the network’s gradients to

create perturbations. Adversarial training makes neural networks robust to such attacks, by

training them on both regular and adversarial examples.

Figure 1. A demonstration of the Fast Gradient Sign Method (FGSM) attack [2], a gradient-based adversarial

attack causing a model to misclassify a panda as a gibbon.

Counterfactual Explanations give us insights into how machine learning models make deci-

sions, by exploring howstrategicallymodifying certain feature values causes changes inmodel

outputs.

Figure 2. A counterfactual ’9’ generated for a factual ’3’, for a neural network

Plausible counterfactuals are those consistent with the distribution of the data, while faithful

counterfactuals are those consistent with the model’s learned representation of the data.

Model explainability can be defined as the degree to which faithful counterfactuals generated

for the model are also plausible.

2. Research Questions

Prior work qualitatively demonstrated that adversarially robust models produced counterfac-

tuals containing more class-specific features than regular models, for image data.

We perform a systematic, quantitative study across both tabular and image data that investi-

gates the following questions:

Research Question 1: Are neural networks made robust to gradient-based adversaries through

adversarial training more explainable than a regularly trained neural network?

Research Question 2: Among adversarially robust neural networks, are those trained with a

stronger gradient-based adversary more explainable than those trained with a weaker gradient-

based adversary?

3. Methodology

We perform experiments for both image data (MNIST) and tabular data (California Housing),

to determine whether robust neural networks are more explainable than standard networks,

and whether the extent of adversarial training impacts explainability. We perform the following

steps:

Train a regular neural network (no adversary), and three networks with varying strengths of

adversary in training using the gradient-based Projected Gradient Descent (PGD) attack. We

measure their robustness against FGSM [2] and PGD [3] attacks.

Generate counterfactuals for each of our models both along inter-class decision boundaries,

and in the model’s learned maximum likelihood regions for the target class, using the

Energy-Constrained Counterfactuals (ECCo) [1] generator that produces counterfactuals

faithfully describing model behavior.

Compare the plausibilities of faithful counterfactuals produced by ECCo for our regular and

robust networks. We measure the implausibility of a counterfactual as the average distance

between itself and its nearest neighbors.

4. Results

Table 1. Implausibilities and robust accuracies for standard and robust neural networks trained on MNIST and

California Housing. Lowest implausibility for each dataset and convergence criterion marked in bold

Dataset Training
Accuracies Counterfactual Implausibilities

Clean FGSM PGD Impl. (Boundary) Impl. (Target Class)

MNIST

Standard 0.981 0.032 0.002 0.437 ± 0.002 0.390 ± 0.004

Strong-AT 0.969 0.714 0.653 0.412 ± 0.002 0.221 ± 0.005

Medium-AT 0.984 0.379 0.298 0.411 ± 0.002 0.236 ± 0.005

Weak-AT 0.983 0.248 0.062 0.416 ± 0.003 0.262 ± 0.006

California

Housing

Standard 0.857 0.211 0.217 1.673 ± 0.072 2.358 ± 0.124

Strong-AT 0.771 0.644 0.647 1.196 ± 0.072 2.762 ± 0.149

Medium-AT 0.810 0.563 0.572 1.224 ± 0.070 2.884 ± 0.188

Weak-AT 0.840 0.337 0.350 1.390 ± 0.074 2.632 ± 0.122

Our key takeaways as observed in Table 1 are as follows:

Robust neural networks for both datasets learned more explainable decision boundaries

between classes than standard networks. For California Housing data, more robust

networks produced more plausible counterfactuals.

Robust neural networks for image data (MNIST) learned more explainable representations

of classes than standard networks, with more robust models producing more plausible

counterfactuals.

Surprisingly, robust California Housing networks did not learn more explainable class

representations than the regular network, most likely because adversarial training

worsened the model’s learned class representations to accommodate for adversarial

examples. This is evidenced by the high clean and robust accuracy trade-off.

The above underscores difficulties with traditional adversarial training for tabular data,

due to the innate properties of tabular data (heterogeneity, varying inter-feature

correlations).

5. Visual Example

Figure 3. A factual ’3’ (left) and counterfactual ’8’s produced by the standard model (middle) and most robust

model (right)

This example demonstrates a robust MNIST neural network producing a counterfactual sig-

nificantly more plausible than that of a standard network.

6. Limitations and FutureWork

Our research was limited to the scope of gradient-based adversaries. However, there also

exist black-box adversaries that learn about the underlying model by querying it. Future

work can explore how black-box robustness impacts model explainability.

We used one network architecture for each of our datasets, which may not comprehensively

capture the relationship between robustness and explainability.

Our experiments revealed difficulties with adversarial training techniques for tabular data.

An interesting direction for future research can be using deep neural decision tree

architectures for tabular data, which perform better than shallow neural networks.

7. Conclusion

We demonstrated empirically that neural networks robust to gradient-based adversaries

learned more explainable boundaries between classes, for both image and tabular data

For image data, we observe that robust networks learn significantly more explainable class

representations than a standard network, and that the more robust a neural network is,

the more explainable its learned representation of the classes.

We hope our research encourages future work towards developing robust neural

networks paying adequate consideration to model explainability.
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