
Memory Layout Optimisation Abstract Syntax Treeson
Applying to speed up the and compilation phases.Data-Oriented Design type-checking code-generation

Author: Iannis de Zwart <i.r.e.dezwart@student.tudelft.nl> Supervisors: Soham Chakraborty, Dennis Sprokholt

 Research question
How does the application of Data-Oriented

Design principles [2] on Abstract Syntax Trees

affect the speed of the type checking and

code generation phases for compilation of

procedural programming languages?

 Methodology
Benchmarking approach

 Collected dataset of preprocessed C code
 Transpiled to Tea language
 Implemented various AST layout optimisations for

Tea compiler using DOD principles
 Benchmark performance for type-checking and

code-generation phases
 Data analysis => conclusion & recommendations.

 Type-checking
 SoA 3.5x - 7.1x speedup
 Most gains in this phase

 Code-generation
 SoA 2.3x - 3.1x speedup

 Significant upwards trend
 Positive impact cache miss

rate & memory usage
 AST size 6-12x smaller.

 Conclusions
 Struct-of-Arrays signif. speedup in both phases
 SoA impl. required extensive development
 Simple DOD optimisations => modest speedups
 Variations in results by programs & machines
 No significant performance reductions.

Recommendations
 Adopt SoA for substantial speedups, if

development costs can be justified
 Compact data structures, apply DOD principles
 Use memory pools & efficient allocation.

References
[1] 0.8.0 Release Notes - The ZIG
Programming Language.

[2] Data-oriented design. Stockport,
England: Richard Fabian, Sept. 2018.

 Introduction

int = +foo bar ;1

VariableDeclaration

Type()int

Identifier()foo

Identifier()bar

BinaryOp()+

LiteralInt()1

ASTs are created during parsing phase,

and utilised during type-checking & code-

generation. Naive AST implementations are

sparsely laid out in memory, resulting

in bad cache locality. Zig compiler devs

re-implemented their AST, leading to 40%

performance improvements .

This research leverages these findings.

[1]

FINAL

PRES.

 Results

 Future work
 Advanced memory layout &

allocation strategies
 Dynamic AST optimisations (JIT
 Rework AST impl. in production-

grade compilers
 Other types of programming

languages.

