
Memory Layout Optimisation Abstract Syntax Treeson
Applying to speed up the and compilation phases.Data-Oriented Design type-checking code-generation

Author: Iannis de Zwart <i.r.e.dezwart@student.tudelft.nl> Supervisors: Soham Chakraborty, Dennis Sprokholt

�� Research question
How does the application of Data-Oriented

Design principles [2] on Abstract Syntax Trees

affect the speed of the type checking and

code generation phases for compilation of

procedural programming languages?

�� Methodology
Benchmarking approach�

�� Collected dataset of preprocessed C code�
�� Transpiled to Tea language�
�� Implemented various AST layout optimisations for

Tea compiler using DOD principles�
�� Benchmark performance for type-checking and

code-generation phases�
�� Data analysis => conclusion & recommendations.

� Type-checking�
� SoA 3.5x - 7.1x speedup�
� Most gains in this phase�

� Code-generation�
� SoA 2.3x - 3.1x speedup�

� Significant upwards trend�
� Positive impact cache miss

rate & memory usage�
� AST size 6-12x smaller.

�� Conclusions
� Struct-of-Arrays signif. speedup in both phases�
� SoA impl. required extensive development�
� Simple DOD optimisations => modest speedups�
� Variations in results by programs & machines�
� No significant performance reductions.

Recommendations�
� Adopt SoA for substantial speedups, if

development costs can be justified�
� Compact data structures, apply DOD principles�
� Use memory pools & efficient allocation.

References
[1] 0.8.0 Release Notes - The ZIG
Programming Language.

[2] Data-oriented design. Stockport,
England: Richard Fabian, Sept. 2018.

�� Introduction

int = +foo bar ;1

VariableDeclaration

Type()int

Identifier()foo

Identifier()bar

BinaryOp()+

LiteralInt()1

ASTs are created during parsing phase,

and utilised during type-checking & code-

generation. Naive AST implementations are

sparsely laid out in memory, resulting

in bad cache locality. Zig compiler devs

re-implemented their AST, leading to 40%

performance improvements .

This research leverages these findings.

[1]

FINAL

PRES.

�� Results

�� Future work
� Advanced memory layout &

allocation strategies�
� Dynamic AST optimisations (JIT�
� Rework AST impl. in production-

grade compilers�
� Other types of programming

languages.

