
Boilerplate code data smell impact on LLMs for Code Generation Tasks
Data hound: analysing smells in large code datasets

Supervisors:
Jonathan Katzy1

Răzvan Popescu1

Author:
Stefan Minkov

Responsible Professors:
Maliheh Izadi1

Arie van Deursen1

1Delft University of Technology

Introduction

Context

Data smells are indicators for latent data quality issues. [1]
There have been reported 71 categories of Data Smells for Coding Tasks[2]. One of them is
Boilerplate code, see Figure 1.
Data Smells are reported to potentially impact the performance of Large Language Models
(LLMs) when present in their input data.

Data smells
for Coding Tasks

Uninformative
Code

Irrelevant Code
Boilerplated

Code

Figure 1. Boilerplate code within the Taxonomy of Data Smells for Coding Tasks

Gap and Motivation

There is no academic literature quantitatively describing how boilerplate code, as a data smell,
impacts code generation by LLMs[2].
If the data smell significantly impacts LLM performance on coding tasks, it could introduce an
unknown bias in their evaluation.

"Smelly"
Boilerplate

Code
Large Language Model

Affect on
 Performance

Figure 2. Boilerplate code within the Taxonomy of Data Smells for Coding Tasks

Research Questions

We define the following research questions to address the gap:

RQ1: How widespread is API usage pattern Boilerplate Code across The Heap?
RQ2: How does Boilerplate Code affect the code completion performance of an LLM when
present in the context window or the target of an inference?
RQ3: Is Boilerplate Code memorized by LLMs?

Methodology

API

Batch
0

Batch
N

API

Modified
MARBLE
Pipeline

Modified
MARBLE
Pipeline

...

Collect
Boilerplate

Snippets Start
and End
Positions Annotate

via
Bitmask 

The Heap

...

...

Figure 3. Detection and annotation pipeline

Annotated
Data

Clean
Data

No-Context
Next Token
Prediction

with Causal
Masking

Next Line
Prediction
on 10-line
Context

with Causal
Masking

Method
Body

Prediction
on Signatire

Context
with FIM
Masking

Method
body

Prediction
on Full
Context

with FIM
Masking

`

SmolLM-
135M

Starcoder2-
3B Mellum-4B

Exact
Match BLEU

Levershtain
Distance

Normalized

ROUGE
1, 2, L

Figure 4. Inferencing and Evaluation pipeline

We leverage a modified version of the MARBLE tool[3] to mine API boilerplate code snippets,
as seen in Figure 3
We develop four experiments in order to evaluate how boilerplate code affects LLM code
prediction capabilities when present in the context or target, as seen in Figure 4.
We developed an additional k‐extractibility experiment to measure how much LLMs actually
memorize boilerplate code.

Results

Only 0.3% of the files within The Heap contain the data smell but that accounts to 20,6% of
all files containing the 8 target APIs which we investigated.
LLMs predict code containing boilerplate API usage patterns up to 33 percent points better
than.
Up to 15,8% of boilerplate code is partially memorized by LLMs.

20.6%

79.4%

Overall

36.4%

63.6%

android.app.
ProgressDialog

18.0%

82.0%

android.database.sqlite

51.3% 48.7%

android.support.
v4.app.ActivityCompat

4.5%

95.5%

com.squareup.picasso

1.6%

98.4%

java.beans.
PropertyChangeSupport

20.7%

79.3%

java.io.BufferedReader

9.9%

90.1%

javax.xml.parsers

8.7%

91.3%

javax.xml.transform

Boilerplate files
Clean files

(a) Data Smell part within API investigated files

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ac

t M
at

ch

Boilerplate Contaminated
Boilerplate Free
Baseline

(b) Representative results for Next‐Token_prediction
on SmolLM‐135M and Starcoder2‐3B

Conclusions

Boilerplate code data smell introduces significant bias in LLM evaluation.
While the memorization of boilerplate code by LLMs might boost their performance in coding
tasks, it may entail legal and privacy consequences for developers that use them.

References

[1] H. Foidl, M. Felderer, and R. Ramler, “ Data Smells: Categories, Causes and Consequences,
and Detection of Suspicious Data in AI‐based Systems ,” in 2022 IEEE/ACM 1st International
Conference on AI Engineering – Software Engineering for AI (CAIN). Los Alamitos, CA, USA:
IEEE Computer Society, May 2022, pp. 229–239. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1145/3522664.3528590

[2] A. Vitale, R. Oliveto, and S. Scalabrino, “A catalog of data smells for coding tasks,” ACM Trans.
Softw. Eng. Methodol., vol. 34, no. 4, Apr. 2025. [Online]. Available:
https://doi.org/10.1145/3707457

[3] D. Nam, A. Horvath, A. Macvean, B. Myers, and B. Vasilescu, “Marble: Mining for boilerplate
code to identify api usability problems,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), 2019, pp. 615–627.

s.a.minkov-1@student.tudelft.nl

https://doi.ieeecomputersociety.org/10.1145/3522664.3528590
https://doi.org/10.1145/3707457
mailto:s.a.minkov-1@student.tudelft.nl

