Boilerplate code data smell impact on LLMs for Code Generation Tasks

Data hound: analysing smells In large code datasets

Responsible Professors:
Maliheh Izadi?
Arie van Deursen®

Author:
Stefan Minkov

Supervisors:
Jonathan Katzy*
Razvan Popescu?

%]
TUDelft

1Delft University of Technology

Introduction Methodology Results
Context + Only 0.3% of the files within The H tain the data smell but that ts to 20,6% of
— Modified nly 0.3% of the files within The Heap contain the data smell but that accounts to 20,6% o
= Data smells are indicators for latent data quality issues. [1] 0 NI[;;‘;}:EIEE B(iféi;?;te all files con.tammg the 8 t.ar.get AP|S which we investigated. |
= There have been reported 71 categories of Data Smells for Coding Tasks|2]. One of them is > AP > - >Snippets Start] lt‘rl;MS predict code containing bollerplate APl usage patterns up to 33 percent points better
Boilerplate code, see Figure 1. P— - Modified and End an.
. . ¢ Heap > Positi . >’ ' ' | '
= Data Smells are reported to potentially impact the performance of Large Language Models N 1\/1[;;1:5;5 i > Ansgate Up to 158% of bollerplate code Is partially memorized by LLMs.
(LLMs) when present in their input data. RN - Bitmask
Data smells
i v
for Coding Tasks Uninformative Figure 3. Detection and annotation pipeline
Code v o
Irrelevant Code l | °
Boilerplated Annotated Clean 0.8
Code Data Data _
2 0.6 8
>
Figure 1. Boilerplate code within the Taxonomy of Data Smells for Coding Tasks §0.4_
v v v v f . :
. . . Method MGthOd 0.21 é - I Boile late—Contaminéted
Gap and Motivation No-Context Ne)((it L¥ne BOdy bOdy 8 I Boileiﬁlate—Free
T™h : demic literat Fiatively d Hine h hoil at q dat | Next Token 5;161 (I)C_tﬁzg Prediction Prediction 0.0 | W _Bascline
There t|s nodaca em|cﬁ| ers u[E l\cilu[ag atively describing how boilerplate code, as a data smell, P.I'edlctlon G on Signatire on Full) Representative results for Next-Token. prediction
Impacts code generation Dy SL£]. with Cgusal with Causal Context Context (a) Data Smell part within APl investigated files on SmolLM-135M and Starcoder2-3B
= |f the data smell significantly impacts LLM performance on coding tasks, it could introduce an Masking Masking with FIM with FIM
e : : Maski Maski .
unknown bias in their evaluation. asking asking Conclusions
& S | | o |
Affect on S = Boilerplate code data smell introduces significant bias in LLM evaluation.
Performance S %LM S vd : l = While the memorization of boilerplate code by LLMs might boost their performance in coding
"Smelly" > I?;)SM) > ar(;% e Mellum-4B . | tasks, it may entail legal and privacy consequences for developers that use them.
Boilerplate | mmm»- >
Code
A ¢ References
Large Language Model 7 7 7)
Exact BLEU Distance. ROVGE - .
Fioure 2. Boilerplate code within the Taxonomy of Data Smells for Coding Tasks Match Normalized 1,2, L [1] H. Foidl, I\/I.. Felderer, a.n(.j R. Ramle.r, Data Smells: Cate”g.orles, Causes and Consequen;es,
and Detection of Suspicious Data in Al-based Systems | in 2022 [EEE/ACM 1st International

Conference on Al Engineering - Software Engineering for Al (CAIN). Los Alamitos, CA, USA:
IEEE Computer Society, May 2022, pp. 229-239. |Online]. Available:
https://dol.ieeecomputersociety.org/10.1145/3522664.35285%0

2] A. Vitale, R. Oliveto, and S. Scalabrino, “A catalog of data smells for coding tasks,” ACM Trans.
Softw. Eng. Methodol., vol. 34, no. 4, Apr. 2025. [Online]. Available:
https://doi.org/10.1145/3707457

3] D. Nam, A. Horvath, A. Macvean, B. Myers, and B. Vasilescu, “Marble: Mining for boilerplate
code to identify api usability problems,” in 2019 34th [EEE/ACM International Conference on

Automated Software Engineering (ASE), 2019, pp. 615-627.

Figure 4. Inferencing and Evaluation pipeline

Research Questions

viie deiire tre rellowing researcn qUESHenS to aoid ess the gap = We leverage a modified version of the MARBLE tool[3] to mine API boilerplate code snippets,

as seen in Figure 3
= We develop four experiments in order to evaluate how boilerplate code affects LLM code
prediction capabilities when present in the context or target, as seen in Figure 4.

= We developed an additional k-extractibility experiment to measure how much LLMs actually
memorize boilerplate code.

= RQ1: How widespread is APl usage pattern Boilerplate Code across The Heap?

= RQ2: How does Boilerplate Code affect the code completion performance of an LLM when
present in the context window or the target of an inference?

= RQ3: Is Boilerplate Code memorized by LLMs?

s.a.minkov-1@student.tudelft.nl

https://doi.ieeecomputersociety.org/10.1145/3522664.3528590
https://doi.org/10.1145/3707457
mailto:s.a.minkov-1@student.tudelft.nl

