Boilerplate code data smell impact on LLMs for Code Generation Tasks

Data hound: analysing smells In large code datasets
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Figure 4. Inferencing and Evaluation pipeline

Research Questions

viie deiire tre rellowing researcn qUESHenS to aoid ess the gap = We leverage a modified version of the MARBLE tool[3] to mine API boilerplate code snippets,

as seen in Figure 3
= We develop four experiments in order to evaluate how boilerplate code affects LLM code
prediction capabilities when present in the context or target, as seen in Figure 4.

= We developed an additional k-extractibility experiment to measure how much LLMs actually
memorize boilerplate code.

= RQ1: How widespread is APl usage pattern Boilerplate Code across The Heap?

= RQ2: How does Boilerplate Code affect the code completion performance of an LLM when
present in the context window or the target of an inference?

= RQ3: Is Boilerplate Code memorized by LLMs?
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