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Introduction

Context

Data smells are indicators for latent data quality issues. [1]
There have been reported 71 categories of Data Smells for Coding Tasks[2]. One of them is
Boilerplate code, see Figure 1.
Data Smells are reported to potentially impact the performance of Large Language Models
(LLMs) when present in their input data.
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Figure 1. Boilerplate code within the Taxonomy of Data Smells for Coding Tasks

Gap and Motivation

There is no academic literature quantitatively describing how boilerplate code, as a data smell,
impacts code generation by LLMs[2].
If the data smell significantly impacts LLM performance on coding tasks, it could introduce an
unknown bias in their evaluation.
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Figure 2. Boilerplate code within the Taxonomy of Data Smells for Coding Tasks

Research Questions

We define the following research questions to address the gap:

RQ1: How widespread is API usage pattern Boilerplate Code across The Heap?
RQ2: How does Boilerplate Code affect the code completion performance of an LLM when
present in the context window or the target of an inference?
RQ3: Is Boilerplate Code memorized by LLMs?

Methodology
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Figure 3. Detection and annotation pipeline
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Figure 4. Inferencing and Evaluation pipeline

We leverage a modified version of the MARBLE tool[3] to mine API boilerplate code snippets,
as seen in Figure 3
We develop four experiments in order to evaluate how boilerplate code affects LLM code
prediction capabilities when present in the context or target, as seen in Figure 4.
We developed an additional k‐extractibility experiment to measure how much LLMs actually
memorize boilerplate code.

Results

Only 0.3% of the files within The Heap contain the data smell but that accounts to 20,6% of
all files containing the 8 target APIs which we investigated.
LLMs predict code containing boilerplate API usage patterns up to 33 percent points better
than.
Up to 15,8% of boilerplate code is partially memorized by LLMs.
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(a) Data Smell part within API investigated files
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(b) Representative results for Next‐Token_prediction
on SmolLM‐135M and Starcoder2‐3B

Conclusions

Boilerplate code data smell introduces significant bias in LLM evaluation.
While the memorization of boilerplate code by LLMs might boost their performance in coding
tasks, it may entail legal and privacy consequences for developers that use them.
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