
11
Purpose language

Scope graphs are graphs where each node
represents a new scope.

A type class is a family of types that
implement a common interface (set of
functions).

An instance of the type class is a type that
belongs to this family.

References
[1] Mark P. Jones. “A System of Constructor Classes: Overloading and Implicit Higher-Order Polymorphism”. In: Proceedings of the
Conference on Functional Programming Languages and Computer Architecture. FPCA ’93. Copenhagen, Denmark: Association for
Computing Machinery, 1993, page 52-61. isbn: 089791595X. doi: 10 . 1145 / 165180 . 165190

terminology

building type checkers using scope graphs
for a language with type classes

Responsible Professor & Supervisor a.l.mocanu@student.tudelft.nl Supervisor
Casper Bach Poulsen Andreea Mocanu Aron Zwaan

"How does the declarativity and feature
extensibility of the implemented type
checker compare with the typing rules
provided in [1]?"

"How can we build type checkers
for languages with support for type
classes, using scope graphs?"

2

The implementation provided [4] passes 30 out of 35 tests

covering basic programs, instance resolution, overlapping

instances. The test suite identified a bug when type checking

functions declared within the scope of a type class or instance.

Compared to [1], the current implementation is intuitive and

easy to understand, with the type checking algorithm having

two distinct phases. However, it requires more type

annotations than Haskell and does not support as many

features. Current implementation offers comparable solutions

for resolving qualified types (type constraints on type

variables).

 results5

data Expr = Num Int | Bool Bool
 | Plus Expr Expr | Ident String
 | App Expr Expr | Abs String Expr
 | Let String Expr Expr

 data Type = NumT | BoolT
 | FunT Type Type
 | TyVar String
 | TyClass String

data DeclT = ClassDecl String [Type] [DeclT]
 | InstDecl [Type] String [DeclT]
 | Method String Type Type
 | FunDecl String String DeclT Expr

The typechecker is implemented for a mini-language with support for type classes, with
the following syntax:

3

 class A a where
 f :: a -> Bool

 instance A Int where
 f :: Int -> Bool
 f x = True

 foo :: Int -> Bool
 foo x = f x

1 2

 3 4

5

6

7 8

 9

10 11 12 13

introduction

Fig 1: Scope graph for the code (left) and its legend (right).

Declaration

Reference

Parent scope

4

Type checkers help developers catch errors
in their code, such as type mismatches or
undefined operations, early.

However, implementing type checkers is not
a trivial task. One particular challenging
aspect of type checkers is name binding
(associating names with units).

method
A Haskell library [3] is used to create scope graphs
from programs.

Name resolution is resolved by finding a path from a
reference to the corresponding declaration.

[2] Robin Milner. A theory of type polymorphism in programming. Journal of computer and system sciences,17(3):348–375, 1978.

[3] https://github.com/heft-lang/hmg
[4] https://github.com/andreealmocanu/scope-
graph-type-class

Scope graphs provide a model for resolving
names during type checking, uniformly and
independently of language.

11/12

19/23

Type check error

Type checks

Type checks

Write a caption that will clearly
explain what this graphic is about
and how it relates to the study.

Conclusion

Add support for type constructors and subclasses to improve expressiveness and reusability,
as well as provide more support for polymorphism.
Implement a type inference algorithm such that the language requires less type annotations.

The approach of using scope graphs is promising and intuitive.

Recommendations for future work:

Type check error

Fig 2: Two progress circles indicating the
how many tests pass; programs that raise

errors (top) and that type check (bottom).

6

 3 4

7

1 2

 8

10

12 13 11:

:

:

