
The Curry-Howard isomorphism states that logic
formulas correspond to types, proofs correspond to terms,
provability corresponds to inhabitation and that proof
normalization corresponds to term reduction.

This isomorphism can be utilised in static verification of
programs as -
● It is possible to stipulate properties of functions as types

and provide proofs by defining functions of said types.
● Equational reasoning can be used to prove properties of

the form lhs ≡ rhs.
● Propositions as types can be used to add pre-condition

logic to functions.
● Essential invariants of data-types can be enforced through

properties in their constructors.

>_ Practical Verification of Functional Libraries D.Sabharwal
@student.tudelft.nl

J.G.H.Cockx , L.F.B.Escot
@tudelft.nl

CSE-3000
29 June 2021

Is agda2hs a viable framework for bringing formal
verification to Haskell programs ?

1. Can we port the Haskell library Data.Map to the
language set of agda2hs ?

2. What invariants and properties are guaranteed in this
library ?

3. Can we formally state and verify these properties ?

Properties and Verification

● External Verification
Type-class laws
The required properties of the 6 type class instances were verified.

Equivalent function re-writes
Prove that more optimised function definitions are equivalent to simpler ones.

● Internal Verification

Binary search tree ordering
The values in the left subtree must be smaller than the current value, and those in the
right subtree must be larger.

How an invalid ordering is detected.

Makes functions that modify the data-structure more involved as the return types
have to be dynamically determined.

data Map (k : Set) (a : Set) ⦃ _ : Ord k ⦄ {lower upper : [k]∞} : Set where
 Tip : {{l≤u : lower ≤ upper}} → Map k a {lower} {upper}

 Bin : (size : Nat) → (kx : k) → (x : a) → (l : Map k a {lower} {[kx]})

 → (r : Map k a {[kx]} {upper}) → Map k a {lower} {upper}

1
Re-writing Data.Map in agda2hs
Data.Map is a library providing an efficient Map interface in Haskell.
Internally the Map is represented as a balanced binary-search tree.

The library provides ~150 functions and ~7 type-class instances performing
various operations on Maps. These were successfully re-written in Agda with
minimal changes to their definitions.

Main steps :
● Remove incomplete definitions through pre-conditions
● Rewrite functions to convince Agda’s termination checker
● Add type-class instances through record types

3

2

Agda is a language with totality (no evaluation-stopping
errors and always terminates) and dependent types.
Thus its type system defines all the elements needed to
write propositional and first-order logic statements as types.

agda2hs defines a subset of Agda, which can be used for
writing programs, for which it provides dictionary translation
to Haskell. Since these programs are in Agda, proof based
verification can be performed before the translation to
Haskell.

4

foldableFunctorMap : (f : a → b) (m : Map k a) → foldMap f m ≡ (fold ∘ fmap f) m

toAscListRewrite : (sz : Nat) (kx : k) (x : a) (l r : Map k a)

 → (toAscList (Bin sz kx x l r)) ≡ (toAscList l) ++ ((kx , x) ∷ []) ++ (toAscList r)

null :: Map k a -> Bool

null Tip = True

null (Bin {}) = False

find :: Ord k => k -> Map k a -> a

find _ Tip = error

 "Map: given key is not present.."

find k (Bin _ kx x l r) = ...

find : {k a : Set} → ⦃ kOrd : Ord k ⦄
 → (key : k) (map : Map k a)

 → {key ∈ map} → a

find key t@(Bin sz kx x l r) {prf} = ...

iFoldableMap : {k : Set} ⦃ _ : Ord k ⦄
 → Foldable (Map k)

iFoldableMap .foldMap f Tip = mempty

iFoldableMap .foldMap f (Bin _ _ v l r) =

 mappend (foldMap f l)

 (mappend (f v) (foldMap f r))

instance (Ord k) => Foldable (Map k)

 where

 foldMap f Tip = mempty

 foldMap f (Bin _ _ v l r) =

 mappend (foldMap f l)

 (mappend (f v) (foldMap f r))

null : {k a : Set} → Map k a → Bool

null Tip = true

null (Bin _ _ _ _ _) = false

Outcome
A verified version of Data.Map written in Agda was produced.
Can be used for future verification work on the same library or dependent
libraries.

Agda2hs provides a Haskell translation after checking and erasing the verification.
Required upgrades to agda2hs were also identified to support a larger subset of
Haskell.

Check out the library : https://github.com/dxts/agda2hs-map

Try out agda2hs yourself : https://github.com/agda/agda2hs
insert : {lower upper : [k]∞} → (ky : k) → (y : a) → (m : Map k a {lower} {upper})

 → Map k a {min lower [ky]} {max upper [ky]}

5

