
Optimal Decision Trees (ODTs) produce the best tree in terms of accuracy for a given size limit
and training dataset. Dynamic Programming (DP) based methods were shown to outperform
their counterparts [1], though challenges remain with scaling based on tree depth and feature count
[2]. Leveraging modern hardware, such as multiple CPU cores, offers a promising solution to
improve efficiency. To take advantage of this, we investigate multithreading.

Which parts of a DP approach for ODTs are the best to parallelize and how?
Is parallelizing the higher levels of the search tree more efficient than parallelizing the lower ones?
How does the speed-up achieved through multithreading scale with the dimensions of the
problem? (tree depth and dataset size)

We apply multithreading to the outer loop
within STreeD’s general recursion case. We split
features into blocks which are assigned to
threads in order to compute subproblems.
Multithreading starts at the root of the search
tree. We adjust the following:

High-level overview of our multithreading approach, featuring local and
shared memory. The branches represent recursive calls.

Speed-ups for numbers of threads. ‘d’ denotes depth, ‘n’ the number of feature
nodes. We use our program with multithreading disabled as the baseline.

References

2__Research Questions

[1] - Aglin, G., Nijssen, S., & Schaus, P. (2020). Learning optimal decision trees using caching branch-and-bound search. In Proceedings of AAAI-20 (pp. 3146–3153).
[2] - Demirović, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J., Leckie, C., . . . Stuckey, P. J. (2022). Murtree: Optimal classification trees via dynamic programming and search. CoRR, abs/2007.12652
[3] - van der Linden, J. G. M., de Weerdt, M. M., & Demirović, E. (2023). Necessary and sufficient conditions for optimal decision trees using dynamic programming. Journal of Machine Learning Research. doi: 10.48550/arXiv.2305.19706

P-STreeD: A Multithreaded Approach for DP Optimal Decision Trees
__Author: Albert-Alexandru Sandu (A.A.Sandu@student.tudelft.nl) __ Responsible Professor: Dr. Emir Demirović __Supervisor: Jacobus G.M. van der Linden

1__Background

7__Future Work

_CSE3000 Research Project

5__Experimental results

4__P-STreeD

We compare parallelizing at the root versus the leaf nodes. We find that the root-based version
generally has better runtimes, as well as less terminal solver calls and cache accesses. P-STreeD is
compared with the state of the art: DL8.5 [1], Murtree [2] and STreeD [3]. Our method outperforms the
state of the art in most tests taking more than 1 second. Finally, we investigate the speed-up for up to
four threads. We find speed-ups of up to 2.5x for larger datasets.

6__Discussion and Conclusions
The leaf-based version is much slower than the root-based one. Terminal calls may be done
in parallel, with bounds and solutions updated to the cache too late. This results in nodes not
being pruned, but also redundant computation. There is also overhead from creating threads
or tasks and the leaf-based strategy involves an exponential amount of total tasks.
Our method scales well with larger datasets. This is also where we see the best results.
This complements the state of the art which is able to solve the “easier” datasets very
quickly. For depths equal or larger to 5, we generally see improved runtimes.

We recommend investigating the use of a single cache for each
thread, as well as the integration of a thread pool.
The applicability of P-STreeD to a supercomputer using MPI should
be explored. This involves abstracting the threads into MPI
processes and possibly setting up a dedicated MPI process for the
management of the shared memory (solution and the cache).

Cache: We use fine-grained locking and
synchronize access to specific entries of the
cache.
Terminal Solvers: STreeD uses two
terminal solvers. We assign two such solvers
to each thread.
Similarity lower bound computer: STreeD
uses only one, whereas we use one to each
thread.
Solution (the best tree): The solution
updated by the subproblems is synchronized.

Comparison against the state of the art for depth = 5, n = 31. |D| denotes the
number of instances, |F| the number of features. Time measured in seconds.

Comparison between P-STreeD versions for depth = 5, n = 31. ‘none’ is a version
with multithreading disabled. |D| denotes the number of instances, |F| the number

of features. Time measured in seconds.

Wilcoxon- Signed-Rank Test results
show that our approach generally

outperforms both Murtree and
STreeD. The first value is the W-

Statistic and the second is the p-value
(below 0.05 for statistical significane)

We apply multithreading to STreeD [3]. It uses recursion in its general case, iterating over the
dataset's features. For each feature, it loops through the node budget distribution for the left
subtree. It then recursively calculates the misclassification score of the resulting subtrees from
these splits and selects the optimal feature split based on these scores. It uses caching for
previously stored solutions, similarity based lower bounding and a specialized algorithm for
computing trees of depth 2 with incremental solving (the terminal solver). 90% of STreeD’s
runtime is spent in the terminal solver.
Therefore, an aim is to do terminal calls in parallel.

3__Preliminaries

https://i.imgur.com/7pV6elA.png

