P-STreeD: A Multithreaded Approach for DP Optimal Decision Trees

1__Background

Optimal Decision Trees (ODTs) produce the best tree in terms of accuracy for a given size limit
and training dataset. Dynamic Programming (DP) based methods were shown to outperform
their counterparts [1], though challenges remain with scaling based on tree depth and feature count
[2]. Leveraging modern hardware, such as multiple CPU cores, offers a promising solution to
improve efficiency. To take advantage of this, we investigate multithreading.

2__Research Questions
Which parts of a DP approach for ODTs are the best to parallelize and how?
Is parallelizing the higher levels of the search tree more efficient than parallelizing the lower ones?

How does the speed-up achieved through multithreading scale with the dimensions of the
problem? (tree depth and dataset size)

3__ Preliminaries

We apply multithreading to STreeD [3]. It uses recursion in its general case, iterating over the
dataset's features. For each feature, it loops through the node budget distribution for the left
subtree. It then recursively calculates the misclassification score of the resulting subtrees from
these splits and selects the optimal feature split based on these scores. It uses caching for
previously stored solutions, similarity based lower bounding and a specialized algorithm for
computing trees of depth 2 with incremental solving (the terminal solver). 90% of STreeD’s
runtime is spent in the terminal solver.
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shared memory. The branches represent recursive calls.
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We apply multithreading to the outer loop

within STreeD’s general recursion case. We split
features into blocks which are assigned to
threads in order to compute subproblems.
Multithreading starts at the root of the search
tree. We adjust the following:
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Cache: We use fine-grained locking and
synchronize access to specific entries of the
cache.

Terminal Solvers: STreeD uses two
terminal solvers. We assign two such solvers
to each thread.

Similarity lower bound computer: STreeD
uses only one, whereas we use one to each
thread.

Solution (the best tree): The solution
updated by the subproblems is synchronized.

6__Discussion and Conclusions
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5__Experimental results

We compare parallelizing at the root versus the leaf nodes. We find that the root-based version
generally has better runtimes, as well as less terminal solver calls and cache accesses. P-STreeD is
compared with the state of the art: DL8.5 [1], Murtree [2] and STreeD [3]. Our method outperforms the
state of the art in most tests taking more than 1 second. Finally, we investigate the speed-up for up to
four threads. We find speed-ups of up to 2.5x for larger datasets.

The leaf-based version is much slower than the root-based one. Terminal calls may be done
in parallel, with bounds and solutions updated to the cache too late. This results in nodes not
being pruned, but also redundant computation. There is also overhead from creating threads
or tasks and the leaf-based strategy involves an exponential amount of total tasks.

Our method scales well with larger datasets. This is also where we see the best results.
This complements the state of the art which is able to solve the “easier” datasets very
quickly. For depths equal or larger to 5, we generally see improved runtimes.

Comparison against the state of the art for depth = 5, n = 31. |D| denotes the
number of instances, |F| the number of features. Time measured in seconds.

Diataset _’D |,F| DL&.S STrecld P-STrecD) Murtree
anneal 812 93 5 2 <1 2
andiology 216 148 9 <1 1 <1
breast-wisconsin G523 120 12 3 <1 2
diabetes 768 112 T2 35 14 20
fico-binary 10459 17 <1 2 1 2
german-credit 1000 112 114 102 42 it
heart-cleveland 296 95 15 7 3 1
hepatitis 13T 68 2 <1 1 = |
ionosphere 351 M5 301 370 135
kr-vs-kp 3196 73 12 i 2 7
lvmph 148 68 2 1 1 <1
nmshroom 8124 119 18 1 1 <1
pendigits 7494 216 271 119 235
tie-tae-toe L% 27 S | 1 1 1
vehicle B46 252 258 146 T 137
veast 1484 89 43 12 6 14
Average rank 3.72 2.72 1.55 2.00

Speed-ups for numbers of threads. ‘d’ denotes depth, ‘n’ the number of feature
nodes. We use our program with multithreading disabled as the baseline.
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7 __ Future Work

We recommend investigating the use of a single cache for each
thread, as well as the integration of a thread pool.

The applicability of P-STreeD to a supercomputer using MPI should
be explored. This involves abstracting the threads into MPI
processes and possibly setting up a dedicated MPI process for the
management of the shared memory (solution and the cache).
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Comparison between P-STreeD versions for depth = 5, n = 31. ‘none’is a version
with multithreading disabled. |D| denotes the number of instances, |F| the number
of features. Time measured in seconds.

Dataset |D F| Type Time D25 Calls Cache Hits Cache Misses
oot <1 9444 14649 0920
anneal 812 03 leaf G T366T 1059 HE
node 2 s300 1543 TS
oot 14 aGa10 22361 215745
diabetes s 112 leaf 28 100305 FI600 2048638
none 31 95094 20085 208154
root 3 32733 2T6T B0E3
heart-cleveland 296 05 leaf & 31609 3246 106454
IO 7 27885 2119 T4101
root 1 1427 55 3460
hepatitis 137 68 leaf 1 1470 G5 3020
Ty 1 1273 42 3000
root 2 0854 584 26953
kr-vs-kp 3196 73 leaf & OG25 L] 36721
none 5 e Y 528 24167
Tt 1 1160 12 S143
mushroom 8124 119 leaf =1 83 2 1028
none 1 232 1 603
oot 119 SGIAT 1345 1431858
pendigits 7494 216 leaf 208 G3ITTE 1728 177807

Hone 227 47315 1036 124008

Wilcoxon- Signed-Rank Test results
show that our approach generally
outperforms both Murtree and

Dataset
anneal

audiology STreeD. The first value is the W-
] :f'e:s:"“"“"“s'" Statistic and the second is the p-value
T clanetes (below 0.05 for statistical significane)
—— fico-binary
—e— german-credit depth P-STreel) vs Murtree
—+— heart-cleveland I |15 | 14.0 [0.0008)
—+— hepatitis 5 4 B30 (0.34565)
kr-vs-kp 5 | @ 350 (0.0268)
lymph
mushroom depth | n | P-STreeD vs STreeld
i | 1.0 (0. 0000) 1
24 26.0 (0.0077)
31| 30,0 (0.0130)
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