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INTRODUCTION
Physics-Informed Neural Networks (PINNs) are a class of machine
learning models that integrate physical laws expressed as partial
differential equations (PDEs) into the neural network training process. 
PINNs have gained significant attention due to their ability to solve
forward (estimating the solution to a governing mathematical model) and
inverse (learning the mathematical model’s parameters from observed
data) problems in scientific computing, where traditional numerical
methods such as the Finite Difference Method often struggle with high-
dimensional spaces or ill-posed problems.
The equation to solve for is the viscous 1D Burgers’ Equation:

OBJECTIVE
Which activation function best optimizes the accuracy and training
efficiency of Physics-Informed Neural Networks for solving the 1D Burgers’
Equation? 

To address this overarching question, the study explores the following sub-
questions:

How do common activation functions (ReLU, tanh, sigmoid) perform in
terms of accuracy and training time?

1.

Can adaptive or learnable activation functions improve training dynamics
compared to static ones? 

2.

How do improved activation functions compare to one another in terms of
training speed and accuracy?

3.

RESULTS

ACTIVATION FUNCTION TRADE-OFFS FOR TRAINING EFFICIENCY
OF PHYSICS-INFORMED NEURAL

NETWORKS USED IN SOLVING 1D BURGERS’ EQUATION

CONCLUSION

The process of training PINNs is very similar to that of vanilla NN training,
with one important distinction, the loss function, which is comprised of 3
weighted terms:

the physics loss, ensuring the solution matches the 1D Burgers’ Equation. 1.
 the boundary condition loss, ensuring the solution matches the boundary
data.

2.

 the initial condition loss, ensuring the solution matches the initial data. 3.

These terms are part of the equation that defines the PINN’s total loss:

In order to generate results, the PINN was trained for 30000 epochs using
Mini-Batch Gradient Descent[3] and each of the proposed activation
functions:

hyperbolic tangent1.
sigmoid2.
ReLU (rectified linear unit)3.
layer-wise locally adaptive activation function (LAAF) 4.
neuron-wise locally adaptive activation function (N-LAAF) 5.

The last two activation functions have been proposed in Kawaguchi et. al.
2020[1], and are adaptive activation functions[4], as they incorporate
trainable parameters in each layer/neuron, respectively.

Comparison of traditional activation functions:
tanh outperforms sigmoid and ReLU.
tanh achieves a 2.3x speedup in convergence compared to sigmoid.
tanh achieves a minimum error over 100x smaller than sigmoid, and 1600x
smaller than ReLU

Comparison of adaptive activation functions and tanh:
Both adaptive functions outperform non-adaptive tanh in accuracy and
convergence speed.
N-LAAF achieves an error threshold (1e-5) 3x faster than tanh and 2x faster than
LAAF.
N-LAAF achieves a minimum error over 100x smaller than tanh, and 61x smaller
than LAAF.

Resource trade-offs for tanh, LAAF and N-LAAF
Training time: N-LAAF takes 21% longer than tanh and 7% longer than LAAF.
Memory usage: N-LAAF uses 10% more memory than LAAF and 20% more than
tanh.

The improved performance of the adaptive activation functions can be
attributed to two phenomena:

The enhanced performance of N-LAAF is largely attributed to its fine-
grained adaptability, enabled by neuron-wise trainable parameters. This
adaptability allows the network to better capture localized features, such
as sharp gradients and subtle variations in smooth regions, which are
characteristic of solutions to the 1D Burgers’ equation.
Spectral bias[2], the tendency of neural networks to prioritize learning
low-frequency components, poses challenges in modeling high-frequency
regions with steep gradients like those near x = 0 in the 1D Burgers’
equation, but N-LAAF's additional trainable parameters effectively
mitigate this, enabling superior handling of complex dynamics and
reducing error accumulation compared to LAAF and tanh.


