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off-policy Evaluation [1]
« Off-policy evaluation (OPE) refers to the setting where the
agent estimates the value of a target policy b)?referring only BGCKg round and
to a dataset of experience previously collected by other policies
in this environment.
¢ The objective is to estimate the expected cumulative (discounted)
reward of the target policy would achieve if deployed.

Behaviour-agnostic OPE and DICE Estimators [1]
(a=o )

¢ Behaviour-agnostic OPE denotes an approach where the learning =
algorithm does not make any assumptions about the behavior
A policy that generated the dataset.
\q » Estimators such as from the "DICE" family are employed to display
the ratio between the propensity of the target policy to visit
distinct state-action pairs compared to their occurrence
likelihood in the off-policy data.

Objectives

Overfitting and Double-dipping [3]

e Double-dipping describes overfitting a model through both )
building and evaluating the model on the same dataset, .
o leading to low in-sample error but high variance and poor
generalizability.
¢ In DICE estimators, the same dataset is used for both training the
neural network on Q-value functions and visitation densities, and
estimating the target policy value.
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Sample Data

The true value /) of the nuisance parameter [t is

estimated by /(1) using the training sample (W; );c e by estimator ¢, (7, 7<)using the evaluation sample(W;)ics

distribution }C ( s a) d™(s,a)

correction ratio dp(s,a)

Estimators

Methodology

Figure 1: Model
representation of k-fold
cross-fitting where K=5 [2]

built by using the nuisance
parameter estimator /10 ( /], k)

The true value 0 of the target parameter ¢ is estimated

average per-step
reward value
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Figure 2: Naive DICE
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Conclusion and Future Work

Complex Environments

Limitation: The datasets were
generated using the Frozenlake

environment.

Improvement: Testing SplitDICE
methods in more challenging
environments such as Reacher,
Cartpole etc. to improve scalability.

S

Variants of the DICE Family

Limitation: The results obtained from
SplitDICE builds upon the
configurations of BestDICE.
Improvement: Applying other variants of
DICE such as DualDICE, GradientDICE
etc. to test out varying configurations
of primal/dual regularization and

redundant constraints.
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SplitDICE exhibits lower rates
of error mostly in the spread
of the central portion of
the data

Variance in error values
shows a significant reduction
going from Naive DICE to
5-fold SplitDICE
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Naive DICE

SplitDICE with 2-fold SplitDICE with 5-fold
Models

Figure 4: Box-whisker plot showing the relative error between the
final estimated average per-step reward value and the ground truth
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SplitDICE shows a
concentration of points near
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the median whereas Naive
DICE shows this pattern only
for a few data points

SplitDICE densely clusters
data points around the
desired range (true value)

achieving a more stable and

focused distribution

For SplitDICE, the smaller gap
between the mean and the
median suggests that
distribution of reward values

Naive DICE

SplitDICE with 2-fold SplitDICE with 5-fold

is more symmetric
Models

Figure 5: Box-whisker plot showing the estimated average per- .
step reward value (calculated at step=10000) MSE Variance

Table 1: Performance measures for the considered estimators

Scenarios MSE Bias Variance

@aivoestimator  7.773960e-06  0.000309  0.035533

2-fold cross-fit  3.424816e-06  0.000144  0.015937
G-foldcross-fit

2.487964e-06  0.000172  0.011163 Naive DICE versus 5-fold SplitDICE

(with 5-fold showing enhanced performance)



