In-IDE code generation models Rebeca Varzaru: D.R.Varzaru@student.tudelft.nl Responsible Professor: Dr. Fenia Aivaloglou, Supervisor: Xiaoling Zhang

1.INTRODUCTION

Code generation:

- concept \rightarrow code
- Natural Language Processing (NLP) Code completion:
- ordered next token suggestions
- most used in-IDE feature
- code faster, avoid typos, explore APIs, reduce keystrokes
- well as for collecting and analyzing data from said research" [1]
- Platforms: Google Scholar, Scopus, Web of Science

2.RESEARCH QUESTION

- How have code generation models been integrated into coding environments?
- 1. What code generation models have been integrated into which coding environments?
- 2. What techniques have been used for these code generation models?
- 3. What indicators are used to evaluate code generation models?
- 4. What aspects should be considered when designing in-IDE code generation models?

1.		IDE		
		Visual Studio Code	Python Pycharm	IntelliJIDEA
	IntelliCode Compose			
	NL2CODE			
	IntelliSense			
	Codota			
	TabNine			
Model	AiXcoder			
δ	HISyn			
	OpenAi Codex			
	DeepMind AlphaCode			
	Amazon CodeWhisperer			
	GitHub Copilot			
	Kite			

Fig 2: Code generation models and the IDEs where they are integrated

- 2.

3. METHODOLOGY

• Systematic literature review: "research method and process for identifying and critically appraising relevant research, as

• Search query: ("Large Language Models" OR "code generat*" OR "LLM" OR "code completion") AND ("Coding Environment" OR "ide" OR "Integrated Development Environment" OR "programming environment")

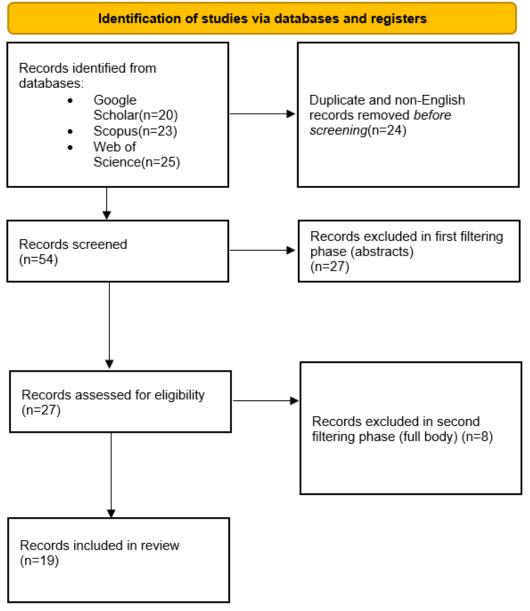


Fig 1: PRISMA flow diagram

• Generative Pre-trained Transfomer (GPT) – IntelliCode Compose, Codex, Kite • Tree-based semantic parsing – NL2CODE • Natural Language Understanding - HISyn

ın	1			
.[Indicator	Description		
1	Perplexity	How much the model is		
		"surprised" by new data		
Ì	ROUGE	String similarity between		
		suggestions and target code		
Ì	Levenshtein	How many edits does it take		
	similarity	to transform suggestion into		
	2	target code		
Ì	Surfacing Rate (SR)	Total number of completions		
		displayed / number of times		
		a completion could be		
		shown		
Ì	Click-Through-Rate	Accepted completions / total		
	(CTR)	completions		
Ì	BLEU accuracy	Token-level overlap		
	score	between suggestion and		
		reference solution		
Ì	Accuracy	Fraction of times the correct		
		code is suggested first		
ĺ	Precision	Accuracy of positive		
		predictions		
ſ	Recall	Completeness of positive		
		predictions		
[F-measure	Harmonic mean of recall		
l		and precision		
ſ	Top-k accuracy	How often the correct		
		solution appears in the first		
		k recommendations		
Γ	Mean reciprocal rank	Overall rank of the result		
	(MRR)			
	Soundness	Syntactical correctness of		
l		suggestions		
	Completeness	Is the suggestion correct and		
		complete enough to provide		
		the desired code snippet		
	Performance	How fast are the suggestions		
		generated		

Fig 3: Indicators used for evaluation

- Papers only from the last 5 years
- Time constraints
- Single researcher

- Language (NL) prompts effectively

[1] Khalid S Khan, Regina Kunz, Jos Kleijnen, and Gerd Antes. Five steps to conducting a systematic review. Journal of the royal society of medicine, 96(3):118– 121,2003

- Code generation should be fast
- All suggestions should be sound and complete
- documentation

5.LIMITATIONS

6.CONCLUSIONS

• Growing trend in AI-driven code generation • Most popular underlying model seems to be GPT • Emerging challenge – teaching users to use Natural

• Future work – a more comprehensive literature review without the time constraints; implementation of code generation model following guidelines from RQ4

7. REFERENCES

• The generated code should be explainable and provide

• The suggested code segments should be generalizable • Code generation tools should provide automatic help and guidance for the user and be able to recover from errors • The tools should be available with as little constraints as possible, such as internet access or high-end technology