In-IDE code generation models

Rebeca Varzaru: D.R.Varzaru@student.tudelft.nl

Responsible Professor: Dr. Fenia Aivaloglou, Supervisor: Xiaoling Zhang

1.INTRODUCTION

Code generation: » Systematic literature review: "research method and process for identifying and critically appraising relevant research, as
well as for collecting and analyzing data from said research® [1]

« Search query: ("Large Language Models" OR "code generat*" OR "LLM" OR "code completion™) AND ("Coding
Environment™" OR "ide" OR "Integrated Development Environment™ OR "programming environment")

» Platforms: Google Scholar, Scopus, Web of Science

e concept —> code

 Natural Language Processing (NLP)

Code completion:

« ordered next token suggestions

» most used in-IDE feature

* code faster, avoid typos, explore APIs, reduce keystrokes

2.RESEARCH QUESTION

How have code generation models been integrated into
coding environments?

1. What code generation models have been integrated into
which coding environments?

2. What techniques have been used for these code
generation models?

3. What indicators are used to evaluate code generation
models?

4. \What aspects should be considered when designing in-
IDE code generation models?

IDE .
Visual Studio Code Python Pycharm IntelliJIDEA

IntelliCode Compose
NL2CODE

IntelliSense

Codota

TabNine

AiXcoder

HISyn

OpenAi Codex
DeepMind AlphaCode
Amazon CodeWhisperer
GitHub Copilot

Kite

Model

Fig 2: Code generation models and the IDEs where they are integrated

3. METHODOLOGY

Identification of studies via databases and registers ]

o
Records identified from
_5 databases:
'5 Google
= Scholar(n=20)
t Scopus(n=23)
5 Web of
Science(n=25)
Y
Records screened
(n=54)
2
3
@
Records assessed for eligibility
(n=27)

Duplicate and non-English
records removed hefore
screening(n=24)

Records excluded in first filtering
phase (abstracts)
(n=27)

Included

X

Records included in review
(n=19)

¥

Records excluded in second
filtering phase (full body) (n=8)

Fig 1: PRISMA flow diagram

4. RESULTS

3 | Indicator

Description

Perplexity How much the model 1s
“surprised” by new data
ROUGE String similarity between

suggestions and target code

Generative Pre-trained Transfomer (GPT) —
IntelliCode Compose, Codex, Kite

Tree-based semantic parsing — NL2CODE
Natural Language Understanding - HISyn

Levenshtein
similarity

How many edits does 1t take
to transtorm suggestion into
target code

Surfacing Rate (SR)

Total number of completions
displayed / number of times
a completion could be
shown

Click-Through-Rate

Accepted completions / total

(CTR) completions

BLEU accuracy | Token-level overlap

score between suggestion and
retference solution

Accuracy Fraction of times the correct
code 1s suggested first

Precision Accuracy of positive
predictions

Recall Completeness of positive
predictions

F-measure Harmonic mean of recall

and precision

Top-k accuracy

How often the correct
solution appears in the first
k recommendations

Mean reciprocal rank
(MRR)

Owverall rank of the result

Soundness

Syntactical correctness of
suggestions

Completeness

Is the suggestion correct and
complete enough to provide
the desired code snippet

Performance

How fast are the suggestions
senerated

Fig 3: Indicators used for evaluation

5.LIMITATIONS

« Papers only from the last 5 years
* Time constraints
» Single researcher

6.CONCLUSIONS

« Growing trend in Al-driven code generation
* Most popular underlying model seems to be GPT

« Emerging challenge — teaching users to use Natural
Language (NL) prompts effectively

» Future work —a more comprehensive literature review
without the time constraints; implementation of code
generation model following guidelines from RQ4

/7. REFERENCES

[1] Khalid S Khan, Regina Kunz, Jos Kleijnen, and Gerd
Antes. Five steps to conducting a systematic review.
Journal of the royal society of medicine, 96(3):118-
121,2003

Code generation should be fast

All suggestions should be sound and complete

The generated code should be explainable and provide
documentation

The suggested code segments should be generalizable

Code generation tools should provide automatic help and
guidance for the user and be able to recover from errors

The tools should be available with as little constraints as possible,
such as internet access or high-end technology



	Slide 1

