
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Code generation:

• concept → code

• Natural Language Processing (NLP)

Code completion:

• ordered next token suggestions

• most used in-IDE feature

• code faster, avoid typos, explore APIs, reduce keystrokes

1.INTRODUCTION

How have code generation models been integrated into

coding environments?

1. What code generation models have been integrated into

which coding environments?

2. What techniques have been used for these code

generation models?

3. What indicators are used to evaluate code generation

models?

4. What aspects should be considered when designing in-

IDE code generation models?

2.RESEARCH QUESTION

• Systematic literature review: "research method and process for identifying and critically appraising relevant research, as

well as for collecting and analyzing data from said research“ [1]

• Search query: ("Large Language Models" OR "code generat*" OR "LLM" OR "code completion") AND ("Coding

Environment" OR "ide" OR "Integrated Development Environment" OR "programming environment")

• Platforms: Google Scholar, Scopus, Web of Science

3. METHODOLOGY

1.

4. RESULTS

5.LIMITATIONS
• Papers only from the last 5 years

• Time constraints

• Single researcher

7. REFERENCES
[1] Khalid S Khan, Regina Kunz, Jos Kleijnen, and Gerd

Antes. Five steps to conducting a systematic review.

Journal of the royal society of medicine, 96(3):118–

121,2003

Rebeca Varzaru: D.R.Varzaru@student.tudelft.nl
Responsible Professor: Dr. Fenia Aivaloglou, Supervisor: Xiaoling Zhang

In-IDE code generation models

2.

• Generative Pre-trained Transfomer (GPT) –

IntelliCode Compose, Codex, Kite

• Tree-based semantic parsing – NL2CODE

• Natural Language Understanding - HISyn

4.

• Code generation should be fast

• All suggestions should be sound and complete

• The generated code should be explainable and provide

documentation

• The suggested code segments should be generalizable

• Code generation tools should provide automatic help and

guidance for the user and be able to recover from errors

• The tools should be available with as little constraints as possible,

such as internet access or high-end technology

Fig 1: PRISMA flow diagram

Fig 2: Code generation models and the IDEs where they are integrated

Fig 3: Indicators used for evaluation

6.CONCLUSIONS
• Growing trend in AI-driven code generation

• Most popular underlying model seems to be GPT

• Emerging challenge – teaching users to use Natural

Language (NL) prompts effectively

• Future work – a more comprehensive literature review

without the time constraints; implementation of code

generation model following guidelines from RQ4

3.

	Slide 1

