On the search for suitable consensus mechanisms for IoT

"How can blockchain-based IoT frameworks solve the problem of fault tolerance in current IoT frameworks with regard to computational power, scalability and Byzantine fault tolerance"

Research project (CSE 3000) by Michael Beekhuizen | Cyber Security Group, Department of Intelligent Systems | Supervised by: Miray Ayşen and Zekeriya Erkin

Introduction

- Central server [1]
- Increasing load and latency [2]
- Deleted, tampered or corrupted data [2]
- Extra servers not best solution [3]

Decentralization to the rescue?

- Blockchain can be used to make the framework decentralized [4]
- P2P network reduce latency
- Consensus mechanism ensures fault tolerance
- Everyone has a copy of ledger \rightarrow Transparent
- Due to structure (chain) \rightarrow Immutable data

Conclusion

- Blockchain can improve fault tolerance
- G-PBFT with improvements is a suitable mechanism

Improvements

Decrease latency in G-PBFT

 Minimizing distance between nodes

Increase trust in G-PBFT

- Nodes form a society
- Proof of trust with certificates

Results [5]-[20]

Consensus mechanism	Byzantine tol.	Scalable # nodes	TPS	BCT	Computational power	IoT suitable
PoW	51% power	High	7	10 min	High	No
PoS	51% stake	High	125-256	2-10 min	Medium-High	No
PoET	log log n / log n	Medium	2.3k	less 1 sec	Medium	Maybe
Raft	0	High	7k-400k	less 1 sec	Low-Medium	Maybe
PBFT	0.33	Low	78k	less 1 sec	Low	Yes
BFT-SMaRt	0.33	Medium	10k	less 1 sec	Low	Yes
Tangle	?	High	1.5k	10ms	Low	Yes
Jointgraph	0.33	High	10k ^a	5 sec ^a	Low	Yes
Proposed solution	?	Medium ^b	600-800	5 sec	Low-Medium	Maybe
G-PBFT	0.33	High	10k ^a	5-6 sec	Low	Yes
PoBT	?	High	?	in ms	Low	Maybe
PoEWAL	50%?	High ^b	1k ^a	1 sec ^a	Medium	Maybe

⁹ Question mark means value not known

^a Value is derived from evaluating of other algorithm which was outperformed by the mechanism (This value can be seen as lower bound)

^b Value is derived from evaluation in the corresponding paper

suitable mechanisms for IoT

CSE3000 - Research project Michael Beekhuizen m.beekhuizen@student.tudelft.nl

Sound good but?

 Consensus requires high computational [2] power (Proof of Work)

• Everyone needs to have a copy [2]

Method

Comparison of consensus mechanisms

- Scalability in # of nodes
- Computational power
- Throughput & latency
- % of Byzantine fault tolerant

Table 1: Comparison of all the eleven different consensus mechanisms

• G-PBFT, BFT-SMaRt and Tangle/Jointgraph are the most

References:

5

[1] B. Bhushan, C. Sahoo, P. Si

ang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang

