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Introduction into Auditory Kernels

Figure 1. Human auditory processing. Schema of the early auditory system illustrating the efficient coding
hypothesis.

Sparse Coding. Decompose signals x(t) into a set of discrete acoustic elements, called auditory
kernels, ϕγk(t), each scaled by ak ∈ R and characterized by a set of parameters γk = (τk, ωk, sk) ∈
Γ, specifying the time shift τk, center frequency ωk, and scale sk [1]. The decomposition is given
by:

x(t) ≈
K∑

k=1
ak ϕγk(t), K ≪ |Γ|

where K is the number of active atoms and Γ the set of all possible atom parameters.

Figure 2. Sparse coding decomposition of a bat echolocation
call. Reconstruction with 200 spikes shown over time and
centroid frequency with MSE 1.918 × 10−4 and SNR 20.62 dB.

Figure 3.Matching pursuit decomposition.
Iterative signal approximation (orange line) with
kernel spikes (purple).

The ChiroVox Dataset and Bat Echolocation Calls

Echolocation as species‐specific auditory trait of Rhinolophus affinis and Rhinolophus pearsonii.

Figure 4. Echolocation call spectrograms of two
Rhinolophidae species. (a) R. affinis calls at 72.9 kHz, with
visible secondary harmonics (faint horizontal lines). (b) R.
pearsonii calls at 53.2 kHz. [2]

Figure 5. Bat echolocation diagram. A: Bat, B: Prey,
E (red): Echolocation call emitted by the bat, R
(green): Response or echo received by the bat.

Research Questions

RQ 1. What spectral characteristics define the structure of the kernels learned through the
sparse coding of bat vocalizations?

RQ 2. To what extent do sparse representations achieve greater coding efficiency compared
to traditional signal representation methods, such as Fourier and wavelet transforms?

RQ 3. To what degree do the learned kernels show functional specialization, with clusters of
similar activation profiles encoding specific variations in bat calls?

RQ 4. To what extent do the learned representations exhibit sparsity, with a high prevalence
of inactive (near‐zero) coefficients across the kernel dictionary?

Frequency Distribution Analysis and Denoising

Figure 6. Denoising performance on R. affinis echolocation call. Recording with 500 kHz sample rate, spectral peak
at 70.56 kHz, and Butterworth cutoff at 49.39 kHz. Python noisereduce library shows poor performance (c).

Energy-Based Bat Call Detection

Figure 7. Energy‐based call detection for R. affinis. [3] Calls are identified where energy exceeds a 3 dB threshold
and padded with 5 ms to make sure to capture FM sweeps.
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Spectral Characteristics (RQ 1) and Efficiency (RQ 2)

Figure 8. Kernel activation in R. affinis echolocation. 32 kernels (400
samples each) trained on echolocation with 10,000 gradient ascent
iterations, sorted by activation in 70‐spike reconstruction.
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Figure 9. Fidelity rate of Matching Pursuit, Fourier, and
wavelet coding for R. affinis and R. pearsonii calls. Shaded
regions denote tight (<1 dB) 95% confidence intervals.

Kernel Functional Specialization (RQ 3)
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Figure 10. Clustering metrics and UMAP projection of kernel
activations. Kernel activations clustering with reconstruction
depth and cluster number chosen using the Silhouette score (Sil.),
Calinski–Harabasz Index (CHI), and Davies–Bouldin Index (DBI).

Figure 11. Auditory kernel‐based clustering captures call
diversity. Five selected clusters (C1–C5) with six central calls
with scaled durations per row.

Activation Sparsity (RQ 4)

Metric 200 2400

Gini (aff.) 0.985 ± 0.008 0.997 ± 0.001
Gini (pea.) 0.994 ± 0.004 0.998 ± 0.001
Hoyer (aff.) 0.960 ± 0.028 0.981 ± 0.011
Hoyer (pea.) 0.996 ± 0.013 0.993 ± 0.006
PQ (aff.) (3.50 ± 0.31) × 10−3(2.3 ± 0.1) × 10−4

PQ (pea.) (6.9 ± 1.5) × 10−4 (1.0 ± 0.1) × 10−4

Table 1. Sparsity metrics. Mean ± SD of Gini, Hoyer, and PQ
over 1000 recordings for R. affinis and R. pearsonii. Figure 12. Cluster sparsity. Kernel activation distribution at 20 dB

SNR across clusters. Contributions >40% are labeled. Mean
cluster Gini = 0.8745.
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