
AFFILIATION

Healthcare Industrial IoT Autonomous
systems

Satellite networks Smart cities Other
applications

4. SURVEY FINDINGS

Different training approaches, like federated learning and collaborative learning, each have
privacy, scalability, and decentralization advantages. [2]

Scalability and fault tolerance are crucial for real-world deployments, allowing DTL networks to
incorporate additional devices and withstand failures without performance degradation. [3]

Scalability is achieved through techniques like hierarchical clustering, decentralized
aggregation, and hardware-aware scaling, which optimize resource utilization and reduce
communication overhead.
Fault tolerance is maintained by secure federated learning methods that ensure resilience
against device failures and malicious activity, ensuring continuous operation even under
adverse conditions.

3. METHODOLOGY
The survey follows a prescribed form [1], and is split into
several stages:

Identification of Relevant Databases and Search Terms
Application of Inclusion and Exclusion Criteria
Screening and Selection Process
Data Extraction and Synthesis
Quality Assessment
Analysis and Interpretation

[1] Barbara Kitchenham and Stuart Charters. Guidelines for performing Systematic Literature Reviews in Software
Engineering. 2, January 2007.
[2] Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S. Rellermeyer. A
Survey on Distributed Machine Learning. ACM Computing Surveys, 53(2):1–33, March 2021. arXiv:1912.09789 [cs, stat]
[3] Jiashi Feng, Huan Xu, and Shie Mannor. Distributed Robust Learning, February 2015.
[4] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized Data, January 2023. arXiv:1602.05629 [cs].
[5] Rakhee Kallimani, Krishna Pai, Prasoon Raghuwanshi, Sridhar Iyer, and Onel L. A. Lopez. TinyML: ´ Tools, applications,
challenges, and future research directions. Multimedia Tools and Applications, 83(10):29015–29045, March 2024.
[6] Ye Xu, Furao Shen, and Jinxi Zhao. An incremental learning vector quantization algorithm for pattern classification.
Neural Computing and Applications, 21(6):1205–1215, September 2012.

RELATED LITERATURE

1. INTRODUCTION
The rapid growth in data from interconnected devices necessitates new
processing methods, with Distributed Tiny Learning (DTL) offering a solution by
distributing machine learning tasks across edge devices to enhance data security
and privacy, improve latency, and take advantage of the distributed computing
power. The advent of 6G networks can boost DTL's efficiency and scalability,
enabling real-time decision-making for applications like autonomous vehicles and
smart cities. This paper surveys DTL, maps the ecosystem and evaluates two DTL
algorithms to provide practical insights into their effectiveness.

6. ALGORITHM BENCHMARK
The first implemented algorithm was
Incremental Learning Vector Quantisation
(ILVQ) [6]. It maintains only a few prototypes
(analogous to centroids in the k-nearest
neighbours algorithm) in memory, which are
gradually updated throughout the training
process, and later used for classification.

The model was tasked with classifying
synthetically-generated points in 3-
dimensional space into two categories: one for
points within a sphere with the radius of 1 and
another for points outside the sphere (right,
top).

The trained model was able to classify the data
points with at least 85% accuracy, by adapting
the “prototypes” to the shape of the input
dataset (right, bottom).

7. FUTURE DIRECTIONS & CONCLUSION
Future research directions in distributed TinyML can explore several promising
avenues: integration with emerging technologies (6G, edge AI), hardware
advancements, security and privacy enhancements, federated learning for non-
IID data, and explainability and interpretability of the models.
By addressing these research areas, distributed TinyML can evolve into a
cornerstone technology for intelligent and efficient data processing at the edge,
paving the way for a more interconnected and intelligent world.

2. OBJECTIVE
The goal is to explore the state-of-the-art in DTL, identify
its potential benefits and challenges, and analyze its
practical applications for advancing 6G applications.
Additionally, two DTL algorithms are implemented and
benchmarked to demonstrate their effectiveness and
viability.

Rok Štular
Supervisor: Mingkun Yang
Responsible Professor: Qing Wang

AUTHORS

A Survey on
Distributed Tiny ML

5. APPLICATIONS OF DISTRIBUTED TINYML

In healthcare, DTL enhances data privacy and diagnostic
efficiency through federated learning, while in industrial
IoT, it improves predictive maintenance and resource
optimization. Autonomous systems benefit from low-
latency data processing for quick decision-making, smart
cities use it for real-time urban management, and
satellite networks leverage it to reduce communication
latency and enhance environmental monitoring. In
addition, there are many other areas that benefit from
application of DTL. [5]

Training data can be partitioned in various ways (data-parallel, model-parallel, or hybrid) to
optimize resource usage. [2]

The second implemented algorithm was a simple neural network classifier,
comprising a dense and a softmax layer, tasked with classifying the digits from
the MNIST handwritten digit dataset (two examples are shown below, left). The
implementation was written using the TensorFlow federated machine learning
framework.

The accuracy of the model was found to be consistent across all setups and
sufficiently high (around 85% across all setups - bottom, right), indicating the
robustness of the algorithm in distributed learning environments.

Communication efficiency can be improved by several means, ranging from network design to
specific information sharing techniques. Model gossiping and protocol optimisations help reduce
communication overhead, while quantisation, sparsification, and compression reduce the size of
model updates. [4]

Network topologies can be centralized (Figure 1), decentralized (Figure 2), swarm, or split, impacting
performance and fault tolerance. [2]

Figure 1: centralized
topology

Figure 2: decentralized
topology

