REINFORCEMENT LEARNING FOR SWITCHING CONTROL OF SEMI-AUTOMATED VEHICLES WITH DRIVER FATIGUE

Irem Ugurlu (Ugurlu@student.tudelft.nl) - Supervisors: Yang Li & Prof. Matthijs Spaan - CSE3000 Research Project

BACKGROUND

Automated driving technology is growing rapidly

MEDIATOR will develop a safe mediating system for drivers in automated vehicles

Markov Decision Process (MDP): discrete-time stochastic control process to model decision-making problems

Reinforcement Learning (RL): training of machine learning models to make a sequence of decisions

GOAL

Determine the optimal actions to guarantee driving safety and driver comfort in decision logic for specific use case of fatigue

METHOD

- Build an MDP model for the problem
- Use existing RL algorithms to evaluate the performance
- Compare with the baseline policy

MDP FORMULATION

1 - FATIGUE REPRESENTATION

KSS is used to quantify the sleepiness level - Alert (KSS = $1 \sim 4$)

- Neither alert nor sleepy (KSS = 5)
- Signs of sleepiness (KSS = $6 \sim 7$)
- Sleepy (KSS = $8 \sim 9$)

2 - ACTIONS

Do Correct Suggest Shift Shift to Emergency Nothing Fatigue Automation Automation Stop

EVALUATION

- OpenAl Baselines algorithms: DQN, A2C, TRPO
- 3 different metrics to evaluate
- Driving safety
- Driving comfort
- Decision efficiency

RESULTS

Algo	\mathbf{rithms}	Unsafe Actions (%)	DHFL (s)	Fixed Scenarios (%)
bas	eline	3.80	1.34	36.53
D	QN	3.22	1.29	87.53
A	2C	23.06	2.58	16.97
TF	PO	3.21	1.30	67.16

Table 1: Driving Safety Metrics

Algorithms	Duration of Being in Fatigue (%)
baseline	2.74
DQN	1.58
A2C	5.89
TRPO	1.49

Table 2: Driving Comfort Metrics

Algorithms	Time to Solve Critical Scenario (s)
baseline	2.80
DQN	2.67
A2C	1.63
TRPO	2.64

Table 3: Decision Efficiency Metrics

CONCLUSION

- DQN and TRPO outperforms other algorithms
- A2C is the worst algorithm
- More successful algorithms than baseline policy
- Further improvements by trying more algorithms

Action Distribution by Fatigue Levels - DQN

REFERENCES

- <u>https://mediatorproject.eu/about/about-mediator</u>
- https://deepsense.ai/what-is-reinforcement-learning-the-complete-guide/
- <u>https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html</u>
- https://www.flaticon.com/