
Discussion
Our results show:

Affinity matrix comparison
Our methods perform somewhat similarly
Dijkstra on distances is more similar to the
normal implementation

Runtime comparison
Both of our implementations perform up to
40% faster for lower perplexity values
Dijkstra on distances performs better than
Dijkstra on affinities overall

Visualisation comparison
Our methods cluster the data more
Dijkstra on affinities leaves more points
between clusters

Conclusion
Our approach:

Lowers runtime for low perplexity values
Still produces useful visualisations, even if they
are different

But:
It is slower for higher perplexity values
Visualisations differ from standard t-SNE

Future Work
Further testing

Datasets
Parameters

Use similar graph traversal algorithms, such as A*
or Bellman-Ford
Attempt to create better visualisations instead of
improving runtime

Improving Sampling-Based t-SNE Performance Using
Dijkstra’s Algorithm for Approximate Distance Computation

Author: Filip Markov (f.i.markov-1@student.tudelft.nl)
Supervisor: Martin Skrodzki
Responsible professor: Klaus Hildebrandt

Results
Quantitative analysis:
Comparing affinity matrices from the three methods

Introduction
In today’s world, high-dimensional data is very
common. Also, it is hard to interpret for humans. So,
proper visualisation is crucial to help people make
sense of it. That’s where t-SNE comes in:
T-distributed Stochastic Neighbour Embedding is:

An algorithm for visualising high-dimensional data
to lower (usually 2 or 3) dimensions
Captures non-linear relationships
Detect patterns and clusters in the data
Perplexity is the main parameter; it controls
global vs local representation

Sampling-based t-SNE is:
t-SNE ran on a sample of the data
Useful for fine-tuning t-SNE (adjust parameters
on the sample, then extrapolate to the full
dataset) [1]

The neighbourhood graph between samples is
reconstructed on every run, which is slow and costly

Research Question
Can Dijkstra's algorithm be used to improve the
speed of sample-based t-SNE?

Methodology
Approximate the distances by traversing the full
neighbourhood graph. We run Dijkstra’s algorithm
from every sample point until we reach
k=3*perplexity sample points.
Alternatively, we apply the Dijkstra algorithm on the
full affinity matrix, to directly obtain the sample
affinity matrix.
Furthermore, we use a modified version of Dijkstra:

Optimised to work on sparse graphs
Stops after reaching k sample points

Qualitative analysis:
Comparing the visualisations of the algorithms

[1] Martin Skrodzki, Nicolas F. Chaves-de Plaza, Thomas Höllt, Elmar Eisemann, and Klaus
Hildebrandt. Navigating Perplexity: A linear relationship with the data set size in t-SNE
embeddings, December 2024. arXiv:2308.15513 [cs].

Comparing the runtime of the algorithms


