A trainable Gaussian color model for determining the color invariant

Gianpaolo Gioia g.g.gioia@student.tudelft.nl

Supervisors:

A. Lengyel (a.lengyel@tudelft.nl) J.C. van Gemert (j.c.vangemert@tudelft.nl)

1. Introduction

- Improving robustness for day-night illumination shift.
- Incorporating physics based prior knowledge in form of color invariant edge detectors.
- Robustness important for autonomous driving and other safety-critical computer vision applications.

2. Background

By incorporating the color invariant in a Convolutional Neural Network (CNN), the performance of the CNN can be improved when dealing with an illumination shift [1]. The color invariant is applied to the input in the Color invariant Convolution (CIConv) layer to create a color invariant representation (Fig. 1) before used to train the CNN.

To calculate the color invariant, we need the spectral differential quotients, E, E\lambda and E\lambda\lambda as is shown in

$$W \qquad W = \sqrt{W_x^2 + W_{\lambda x}^2 + W_{\lambda \lambda x}^2 + W_y^2 + W_{\lambda y}^2 + W_{\lambda \lambda y}^2}, \\ W_x = \frac{E_x}{E}, \quad W_{\lambda x} = \frac{E_{\lambda x}}{E}, \quad W_{\lambda \lambda x} = \frac{E_{\lambda \lambda x}}{E}$$
(1)

every pixel is converted to the Gaussian color model with the following linear transformation:

$$\begin{bmatrix} \hat{E} \\ \hat{E}_{\lambda} \\ \hat{E}_{\lambda\lambda} \end{bmatrix} = \begin{pmatrix} 0.06 & 0.63 & 0.27 \\ 0.3 & 0.04 & -0.35 \\ 0.34 & -0.6 & 0.17 \end{pmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$
(2)

This matrix (1) is a product of the two matrices. With the first one approximating the XYZ basis, being:

(3)

 $\begin{bmatrix} \hat{X} \\ \hat{Y} \\ \hat{Z} \end{bmatrix} = \begin{pmatrix} 0.621 & 0.113 & 0.194 \\ 0.297 & 0.563 & 0.049 \\ -0.009 & 0.027 & 1.105 \end{pmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$

These matrices are fixed in the original CIConv layer and are an approximation for the conversion which creates potential for improvement.

3. Research question

Can the performance of the CIConv layer be improved by making the transition to the Gaussian color model learnable?

4. Method

Baseline. The fixed linear transformation (2) described in the background is an approximation for the conversion to the Gaussian color model and represents the baseline in the experiment.

- **1.** Linear learning. The first set of experiments uses the fixed matrix as a basis and is automatically modified each epoch.
- 2. Non-linear learning. The matrix is replaced by a neural network that accepts three inputs and also outputs three values, representing the RGB and spectral differential quotients respectively.

Option for 1 & 2

- *a)* <u>*Half.*</u> Where only the first transformation from RGB to the XYZ basis (3) is trained.
- *b)* <u>*Full.*</u> Where the full transformation is trained. (2)

Option for 1.

- *a)* <u>Unclamped.</u> The values in the matrix have full freedom of change.
- *b)* <u>*Clamped.*</u> The values in the matrix can only navigate between certain values.

Options for 2.

- Size of the network where there is a distinction between:
 - a) <u>Short network.</u> A network consisting of 3-10-10-10-3.
 - b) Long network. A network consisting of 3-10-10-10-3-10-10-3.
- II. Applied activation function in the network when transitioning from a layer with 3 perceptrons to a layer with 10. So two applications in a long network. All other transformations are ReLU transformations.
 - a) <u>Sigmoid</u> b) <u>Tanh</u> c) ReLU

References

[1] Attila Lengyel, Sourav Garg, Michael Milford, and Jan C. van Gemert. Zeroshot domain adaptation with a physics prior. CoRR, abs/2108.05137, 2021.

5. Results & Conclusion

All tests are performed on the ShapeNet dataset with synthesized images with different lighting strengths.

Method	Options			Accuracy	Mathad	Options			Accuracy
	Half/Full	Clamped?	Clamp range	Accuracy	wiethod	Half/Full	Short/Long	Activation	Accuracy
Baseline	N/A	N/A	N/A	88.4	Baseline	N/A	N/A	N/A	88.4
Linear	Half	False	N/A	85.2	Neural Network	Half	Short	Sigmoid	88.1
		True	[-2.5, 2.5]	89.0				Tanh	Failed
		True	[-1.5, 1.5]	87.5				Relu	86.7
	Full	False	N/A	88.2			Long	Sigmoid	Failed
		True	[-2.5.2.5]	88.5				Tanh	Failed
		True	[-15 15]	88.9				Relu	Failed
Table 1. Classification accuracy for linear learning variations.					Neural Network	Full	Short	Sigmoid	87.7
								Tanh	Failed
								Relu	Failed
							Long	Sigmoid	Failed
								Tanh	Failed

Table 2. Classification accuracy for neural network variations.

Failed

- The results in table 1 show that the when the values in the matrix are clamped, the best results in linear learning are achieved.
- The only consistent performing activation function is the sigmoid, showing potential to outperform the baseline when used in a network of most suitable size.
- We can conclude that making the transformation to the Gaussian color model can indeed improve the performance of the CIConv layer.
- Directions for future work include analysing the color invariant representations of the learned conversions and working with more sizes for the neural network. Also, a convolutional approach for the neural network can be explored where the neural network takes an area into account.

