
1. PROBLEM

Model behavior of large, real-time systems

Useful for [1]:
• System comprehension
• Test case generation
• Documentation

Existing techniques:
• Profiling – affects real-time

behavior
• Source code inference- unscalable
• Log –inference – current

techniques do not scale

TU Delft – Research Project CSE300

Author: Pandelis Symeonidis Supervisors: Mitchell Olsthoorn, Annibale Panichella
p.l.symeonidis@student.tudelft.nl {m.j.g.olsthoorn, a.panichella }@tudelft.nl

Log based behavioral system model inference using
reinforcement learning

2. PROPOSED SOLUTION

Log-based, FSM inference using
reinforcement learning (RL)

RQ: “How effective is reinforcement
learning for inferring a concise and
accurate state model of code behavior?”

• Accuracy of the model?
• F1 score (recall & precision)
• Specificity

• Conciseness of model?
• Model compression

• Scalability of approach?

3. CONTEXT

• XRP Ledger
• Decentralized, distributed, real-time system
• Focus on the consensus algorithm

• Filter logs
• Split consensus rounds (traces)

6. DISCUSSION

• Assumptions
• Each log template is unique in the codebase
• The surrounding region of each state is enough to

decide how to merge
• Assumptions hold on a case-by-case basis
• State space not large enough
• Q-values cannot generalize to whole model

Github repo
1. Damas, C., Lambeau, B., Dupont, P., & Van Lamsweerde, A. (2005). Generating annotated behavior models from end-user scenarios. IEEE Transactions on Software Engineering, 31(12), 1056-1073.

2. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

7. CONCLUSION & FUTURE WORK

• Promising results in each episode
• Q-values might not generalize in this

case

• Fine tune hyper-parameters
• Extend/experiment with state space +

action space
• Fine tune reward function

5. RESULTS

• Inside episode total reward increases providing
promising solutions (models)

• Across episodes no significant sign of learning

• Approach scales linearly with input logs

 XRP logo

Unique State Graph example

4. APPROACH
1) Parse logs to initial model -> 2) Condense to final model by
merging states

1. LOG ANALYSIS

• Syntax Tree: log template identification
• Unique State Graph (USG): parse log traces to initial model

How merge states?
2. FLAPPY BIRD APPROACH

Apply Q-Learning [2] by traversing
model
Goal: Learn to merge states based

on the topology of the surrounding
states.

States:
• # outgoing edges
• Outgoing edges entropy

Actions:
• Don’t merge
• Merge most frequent
• Merge second most

frequent, etc.
Reward agent for merging nodes
trading off accuracy for compression

End episode when reward is negative

1. Unique state graph
example

2. USG merging state 1
and 4

