Solving machine learning with machine learning: **Exploiting Very Large-Scale Neighbourhood Search for synthesizing** machine learning pipelines

1. Motivation

ML is very powerful!

Only 300.000 know how to use ML $\dot{\mathbf{n}}$

AutoML aims to make that 7.8 BILLION

3. Methodology

		Da	tas	et	S	
			Source			
	•	•				
		\cap	no	٦N	<u>/ </u>	
			μει			
	•		•			
[able]		Simp	le dat	aset	S	
Name		ID	Entries	ries Feature		Target Classes
diabetes		37	768		8	2
qsar-biodeg		1494	1055		42	2
seeds		1499	210		7	3
iris		61	150		4	3
blood-transfusion		1464	748		4	2
monks-problems-2		334	601		6	2
ilpd		1480	583		5	2
tic-tac-toe		50	958		9	2
		Comp	lex da	tase	ets	
Name		Ente		Footuros		Target Classes
har						Target Classes
nar			,99 DO	501		0
gisette	41026) 700	00	5000		2
madelon	1485	260	00	501		2
musk	1116	659	98	167		2
gas-drift	1476	139	10	128		6
	Datas	ets fro	m rela	ted	resea	rch
Name		ID	Entrio	a F	eatures	Target Classes
wdbc		1510	569	J	30	1000000000000000000000000000000000000
glass		41	214		9	$\begin{bmatrix} 2\\ 6\end{bmatrix}$
car-evaluation		40664	1728	$\frac{1}{21}$		4
spambase		44	461	57		2
wine-quality-red		40691	1599	11		6
wine-quality-white		40498	4898		11	7

Author Auke Sonneveld a.c.sonneveld@student.tudelft.nl

2

3

4

2. Research Question

How good is Very Large-Scale Neighbourhood search (VLSN) at searching for high-performing pipelines in a grammar, compared to other algorithms?

Professor Sebastijan Dumančić s.dumancic@tudelft.nl

4. Experimental Setup

- Training:validation:test = 70:15:15
- Limited training set during search
- **Stop after 100 pipelines**
- **10 runs per algorithm per dataset**

- - creates bias towards BFS

Supervisor Tilman Hinnerichs T.R.Hinnerichs@tudelft.nl

5. Results

Metrics

b

C

Average Accuracy Standard Deviation

Algorithms

- **BFS = Breadth-First Search**
- MH = Metropolis-Hastings
- MCTS = Monte-Carlo Tree Search
- A^{*} = A^{*} Search
- **GP = Genetic Programming**
- BFS2 = BFS with depth limit 2

using a limited training set